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Preface

SPSS Exact Tests is a statistical package for analyzing continuous or categorical data
by exact methods. The goal in SPSS Exact Tests is to enable you to make reliable in-
ferences when your data are small, sparse, heavily tied, or unbalanced and the validity
of the corresponding large sample theory is in doubt. This is achieved by computing
exact p values for a very wide class of hypothesis tests, including one-, two-, and K-
sample tests, tests for unordered and ordered categorical data, and tests for measures
of association. The statistical methodology underlying these exact tests is well estab-
lished in the statistical literature and may be regarded as a natural generalization of
Fisher’s exact test for the single  contingency table. It is fully explained in this
user manual. The real challenge has been to make this methodology operational
through software development. Historically, this has been a difficult task because the
computational demands imposed by the exact methods are rather severe. We and our
colleagues at the Harvard School of Public Health have worked on these computational
problems for over a decade and have developed exact and Monte Carlo algorithms to
solve them. These algorithms have now been implemented in SPSS Exact Tests. For
small data sets, the algorithms ensure quick computation of exact p values. If a data set
is too large for the exact algorithms, Monte Carlo algorithms are substituted in their
place in order to estimate the exact p values to any desired level of accuracy.

These numerical algorithms are fully integrated into the SPSS 7.0 for Windows sys-
tem. Simple selections in the Nonparametric Tests and Crosstabs dialog boxes allow
you to obtain exact and Monte Carlo results quickly and easily.
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Getting Started

The SPSS Exact Tests option provides two new methods for calculating significance lev-
els for the statistics available through the Crosstabs and Nonparametric Tests procedures.
These new methods, the exact and Monte Carlo methods, provide a powerful means for
obtaining accurate results when your data set is small, your tables are sparse or unbal-
anced, the data are not normally distributed, or the data fail to meet any of the underlying
assumptions necessary for reliable results using the standard asymptotic method.

The Exact Method
By default, SPSS calculates significance levels for the statistics in the Crosstabs and Non-
parametric Tests procedures using the asymptotic method. This means that p values are
estimated based on the assumption that the data, given a sufficiently large sample size,
conform to a particular distribution. However, when the data set is small, sparse, contains
many ties, is unbalanced, or is poorly distributed, the asymptotic method may fail to pro-
duce reliable results. In these situations, it is preferable to calculate a significance level
based on the exact distribution of the test statistic. This enables you to obtain an accurate
p value without relying on assumptions that may not be met by your data. 

The following example demonstrates the necessity of calculating the p value for
small data sets. This example is discussed in detail in Chapter 2. 

Figure 1.1 shows results from an entrance examination for fire fighters in a small
township. This data set compares the exam results based on the race of the applicant.

Figure 1.1 Fire fighter entrance exam results

Count

5 2 2

1 1

2 3 4

Pass

No Show

Fail

Test Results

White Black Asian Hispanic

Race of Applicant

Test Results * Race of Applicant Crosstabulation

1



2 Chapter 1

The data show that all five white applicants received a Pass result, whereas the results
for the other groups are mixed. Based on this, you might want to test the hypothesis that
exam results are not independent of race. To test this hypothesis, you can run the Pearson
chi-square test of independence, which is available from the Crosstabs procedure. The
results are shown in Figure 1.2.

Because the observed significance of 0.073 is larger than 0.05, you might conclude that
exam results are independent of race of examinee. However, notice that the data contains
only twenty observations, that the minimum expected frequency is 0.5, and that all 12
of the cells have an expected frequency of less than 5. These are all indications that the
assumptions necessary for the standard asymptotic calculation of the significance level
for this test may not have been met. Therefore, you should obtain exact results. The ex-
act results are shown in Figure 1.3.

The exact p value based on Pearson’s statistic is 0.040, compared to 0.073 for the as-
ymptotic value. Using the exact p value, the null hypothesis would be rejected at the
0.05 significance level, and you would conclude that there is evidence that the exam
results and race of examinee are related. This is the opposite of the conclusion that
would have been reached with the asymptotic approach. This demonstrates that when
the assumptions of the asymptotic method cannot be met, the results can be unreliable.

Figure 1.2 Pearson chi-square test results for fire fighter data

11.556
1

6 .073
Pearson
Chi-Square

Value df

Asymp.
Sig.

(2-tailed)

Chi-Square Tests

12 cells (100.0%) have expected count less than 5.
The minimum expected count is .50.

1. 

Figure 1.3 Exact results of Pearson chi-square test for fire fighter data

11.556
1

6 .073 .040
Pearson
Chi-Square

Value df

Asymp.
Sig.

(2-tailed)
Exact Sig.
(2-tailed)

Chi-Square Tests

12 cells (100.0%) have expected count less than 5. The
minimum expected count is .50.

1. 
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The exact calculation always produces a reliable result, regardless of the size, distribu-
tion, sparseness, or balance of the data.

The Monte Carlo Method
Although exact results are always reliable, some data sets are too large for the exact p
value to be calculated, yet don’t meet the assumptions necessary for the asymptotic
method. In this situation, the Monte Carlo method provides an unbiased estimate of the
exact p value, without the requirements of the asymptotic method. (See Table 1.1 and
Table 1.2 for details.) The Monte Carlo method is a repeated sampling method. For any
observed table, there are many tables, each with the same dimensions and column and
row margins as the observed table. The Monte Carlo method repeatedly samples a spec-
ified number of these possible tables in order to obtain an unbiased estimate of the true
p value. Figure 1.4 displays the Monte Carlo results for the fire fighter data.

The Monte Carlo estimate of the p value is 0.041. This estimate was based on 10,000
samples. Recall that the exact p value was 0.040, while the asymptotic p value is 0.073.
Notice that the Monte Carlo estimate is extremely close to the exact value. This demon-
strates that if an exact p value cannot be calculated, the Monte Carlo method produces
an unbiased estimate that is reliable, even in circumstances where the asymptotic p value
is not.

Figure 1.4 Monte Carlo results of the Pearson chi-square test for fire fighter data

11.556
1

6 .073 .041
2

.036 .046
Pearson
Chi-Square

Value df

Asymp.
Sig.

(2-tailed) Sig.
Lower
Bound

Upper
Bound

99% Confidence Interval

Monte Carlo Significance (2-tailed)

Chi-Square Tests

12 cells (100.0%) have expected count less than 5. The minimum expected count is .50.1. 

Based on 10000 and seed 2000000 ...2. 
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When to Use Exact Tests
Calculating exact results can be computationally intensive, time-consuming, and can
sometimes exceed the memory limits of your machine. In general, exact tests can be per-
formed quickly with sample sizes of less than 30. Table 1.1 and Table 1.2 provide a
guideline for the conditions under which exact results can be obtained quickly. In Table
1.2, r indicates rows, and c indicates columns in a contingency table.

Table 1.1 Sample sizes (N) at which the exact p values for nonparametric 
tests are computed quickly

One-sample inference

Chi-square goodness-of-fit test
Binomial test and confidence interval
Runs test
One-sample Kolmogorov-Smirnov test

Two-related-sample inference

Sign test
Wilcoxon signed-rank test
McNemar test
Marginal homogeneity test

Two-independent-sample inference

Mann-Whitney test
Kolmogorov-Smirnov test
Wald-Wolfowitz runs test

K-related-sample inference

Friedman’s test
Kendall’s W
Cochran’s Q test

K-independent-sample inference

Median test
Kruskal-Wallis test
Jonckheere-Terpstra test
Two-sample median test

N 30≤
N 100 000,≤
N 20≤
N 30≤

N 50≤
N 50≤
N 100 000,≤
N 50≤

N 30≤
N 30≤
N 30≤

N 30≤
N 30≤
N 30≤

N 50≤
N 15 K 4≤,≤
N 20 K 4≤,≤
N 100 000,≤
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Table 1.2 Sample sizes (N) and table dimensions (r, c) at which the exact p values 
for Crosstabs tests are computed quickly

2 x 2 contingency tables (obtained by selecting 
chi-square)

Pearson chi-square test
Fisher’s exact test
Likelihood-ratio test

r x c contingency tables (obtained by selecting 
chi-square)

Pearson chi-square test  and 
Fisher’s exact test  and 
Likelihood-ratio test  and 
Linear-by-linear association test and 

Correlations

Pearson’s product-moment correlation coefficient
Spearman’s rank-order correlation coefficient

Ordinal data

Kendall’s tau-b  and 
Kendall’s tau-c  and 
Somers’ d
Gamma  and 

Nominal data

Contingency coefficients  and 
Phi and Cramér’s V  and 
Goodman and Kruskal’s tau  and 
Uncertainty coefficient  and 

Kappa  and 

N 100 000,≤
N 100 000,≤
N 100 000,≤

N 30≤ min r c,{ } 3≤
N 30≤ min r c,{ } 3≤
N 30≤ min r c,{ } 3≤
N 30≤ min r c,{ } 3≤

N 7≤
N 10≤

N 20≤ r 3≤
N 20≤ r 3≤
N 30≤
N 20≤ r 3≤

N 30≤ min r c,{ } 3≤
N 30≤ min r c,{ } 3≤
N 20≤ r 3≤
N 30≤ min r c,{ } 3≤

N 30≤ c 5≤
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How to Obtain Exact Statistics
The exact and Monte Carlo methods are available for Crosstabs and all of the Nonpara-
metric tests. See the SPSS Base User’s Guide for detailed information on using the SPSS
menus and dialog boxes.

To obtain exact statistics, open the Crosstabs dialog box or any of the Nonparametric
Tests dialog boxes. The Crosstabs and Tests for Several Independent Samples dialog
boxes are shown in Figure 1.5.

• Select the statistics that you want to calculate. To select statistics in the Crosstabs
dialog box, click Statistics.

• To select the exact or Monte Carlo method for computing the significance level of
the selected statistics, click Exact in the Crosstabs or Nonparametric Tests dialog
box. This opens the Exact Tests dialog box, as shown in Figure 1.6.

Figure 1.5 Crosstabs and Nonparametric Tests dialog boxes

Click here for exact tests
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You can choose one of the following methods for computing statistics. The method you
choose will be used for all selected statistics.

Asymptotic only. Calculates significance levels using the asymptotic method. This pro-
vides the same results that would be provided without the Exact Tests option.

Monte Carlo. Provides an unbiased estimate of the exact p value and displays a confi-
dence interval using the Monte Carlo sampling method. Asymptotic results are also dis-
played. The Monte Carlo method is less computationally intensive than the exact
method, so results can often be obtained more quickly. However, if you have chosen the
Monte Carlo method, but exact results can be calculated quickly for your data, they will
be provided. See Appendix A for details on the circumstances under which exact, rather
than Monte Carlo, results are provided. Note that, within a session, the Monte Carlo
method relies on a random number seed that changes each time you run the procedure.
If you want to duplicate your results, you should set the random number seed every time
you use the Monte Carlo method. See “How to Set the Random Number Seed” on p. 8
for more information.

Confidence level. Specify a confidence level between 0.01 and 99.9. The default value
is 99.

Number of samples. Specify a number between 1 and 1,000,000,000 for the number of
samples used in calculating the Monte Carlo approximation. The default is 10,000.
Larger numbers of samples produce more reliable estimates of the exact p value but
also take longer to calculate.

Figure 1.6 Exact Tests dialog box
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Exact. Calculates the exact p value. Asymptotic results are also displayed. Because com-
puting exact statistics can be time-consuming, you can set a limit on the amount of time
allowed for each test.

Time limit per test. Enter the maximum time allowed for calculating each test. The time
limit can be between 1 and 9,999,999 minutes. The default is five minutes. If the time
limit is reached, the test is terminated, no exact results are provided, and SPSS pro-
ceeds to the next test in the analysis. If a test exceeds a set time limit of 30 minutes,
it is recommended that you use the Monte Carlo, rather than the exact, method.

Calculating the exact p value can be memory-intensive. If you have selected the exact
method and find that you have insufficient memory to calculate results, you should first
close any other applications that are currently running in order to make more memory
available. If you still cannot obtain exact results, use the Monte Carlo method.

Additional Features Available with Command Syntax
The SPSS command language allows you to:

• Exceed the upper time limit available through the dialog box. 

• Exceed the maximum number of samples available through the dialog box.

• Specify values for the confidence interval with greater precision.

Nonparametric Tests
As of release 6.1 of SPSS, two new nonparametric tests became available, the Jon-
ckheere-Terpstra test and the marginal homogeneity test. The Jonckheere-Terpstra
test can be obtained from the Tests for Several Independent Samples dialog box, and
the marginal homogeneity test can be obtained from the Two-Related-Samples Tests
dialog box.

How to Set the Random Number Seed
Monte Carlo computations use the SPSS pseudo-random number generator, which be-
gins with a seed, a very large integer value. Within a session, SPSS uses a different seed
each time you generate a set of random numbers, producing different results. If you want
to duplicate your results, you can reset the seed value. Monte Carlo output always dis-
plays the seed used in that analysis, so that you can reset the seed to that value if you
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want to repeat an analysis. To reset the seed, open the Random Number Seed dialog box
from the Transform menu. The Random Number Seed dialog box is shown in Figure 1.7.

Set seed to. Specify any positive integer value up to 999,999,999 as the seed value. SPSS
resets the seed to the specified value each time you open the dialog box and click on OK.
The default seed value is 2,000,000. 

To duplicate the same series of random numbers, you should set the seed before you gen-
erate the series for the first time.

Random seed. Sets the seed to a random value chosen by your system.

Pivot Table Output
With this release of Exact Tests, output appears in pivot tables. Many of the tables shown
in this manual have been edited by pivoting them, by hiding categories that are not rel-
evant to the current discussion, and to show more decimal places than appear by default.
For information about editing pivot tables, see the SPSS Base User’s Guide and the
SPSS Help system.

Figure 1.7 Random Number Seed dialog box
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Exact Tests

A fundamental problem in statistical inference is summarizing observed data in terms
of a p value. The p value forms part of the theory of hypothesis testing and may be
regarded an index for judging whether to accept or reject the null hypothesis. A very
small p value is indicative of evidence against the null hypothesis, while a large p value
implies that the observed data are compatible with the null hypothesis. There is a long
tradition of using the value 0.05 as the cutoff for rejection or acceptance of the null
hypothesis. While this may appear arbitrary in some contexts, its almost universal
adoption for testing scientific hypotheses has the merit of limiting the number of false-
positive conclusions to at most 5%. At any rate, no matter what cutoff you choose, the
p value provides an important objective input for judging if the observed data are
statistically significant. Therefore, it is crucial that this number be computed
accurately.

Since data may be gathered under diverse, often nonverifiable, conditions, it is
desirable, for p value calculations, to make as few assumptions as possible about the
underlying data generation process. In particular, it is best to avoid making
assumptions about the distribution, such as that the data came from a normal
distribution. This goal has spawned an entire field of statistics known as nonparametric
statistics. In the preface to his book, Nonparametrics: Statistical Methods Based on
Ranks, Lehmann (1975) traces the earliest development of a nonparametric test to
Arbuthnot (1710), who came up with the remarkably simple, yet popular, sign test. In
this century, nonparametric methods received a major impetus from a seminal paper by
Frank Wilcoxon (1945) in which he developed the now universally adopted Wilcoxon
signed-rank test and the Wilcoxon rank-sum test. Other important early research in the
field of nonparametric methods was carried out by Friedman (1937), Kendall (1938),
Smirnov (1939), Wald and Wolfowitz (1940), Pitman (1948), Kruskal and Wallis
(1952), and Chernoff and Savage (1958). One of the earliest textbooks on
nonparametric statistics in the behavioral and social sciences was Siegel (1956).

The early research, and the numerous papers, monographs and textbooks that
followed in its wake, dealt primarily with hypothesis tests involving continuous
distributions. The data usually consisted of several independent samples of real
numbers (possibly containing ties) drawn from different populations, with the
objective of making distribution-free one-, two-, or K-sample comparisons, performing
goodness-of-fit tests, and computing measures of association. Much earlier, Karl
Pearson (1900) demonstrated that the large-sample distribution of a test statistic, based
on the difference between the observed and expected counts of categorical data

2
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generated from multinomial, hypergeometric, or Poisson distributions is chi-square.
This work was found to be applicable to a whole class of discrete data problems. It was
followed by significant contributions by, among others, Yule (1912), R. A. Fisher
(1925, 1935), Yates (1984), Cochran (1936, 1954), Kendall and Stuart (1979), and
Goodman (1968) and eventually evolved into the field of categorical data analysis. An
excellent up-to-date textbook dealing with this rapidly growing field is Agresti (1990).

The techniques of nonparametric and categorical data inference are popular mainly
because they make only minimal assumptions about how the data were generated—
assumptions such as independent sampling or randomized treatment assignment. For
continuous data, you do not have to know the underlying distribution giving rise to the
data. For categorical data, mathematical models like the multinomial, Poisson, or
hypergeometric model arise naturally from the independence assumptions of the sampled
observations. Nevertheless, for both the continuous and categorical cases, these methods
do require one assumption that is sometimes hard to verify. They assume that the data set
is large enough for the test statistic to converge to an appropriate limiting normal or chi-
square distribution. P values are then obtained by evaluating the tail area of the limiting
distribution, instead of actually deriving the true distribution of the test statistic and then
evaluating its tail area. P values based on the large-sample assumption are known as
asymptotic p values, while p values based on deriving the true distribution of the test
statistic are termed exact p values. While exact p values are preferred for scientific
inference, they often pose formidable computational problems and so, as a practical
matter, asymptotic p values are used in their place. For large and well-balanced data sets,
this makes very little difference, since the exact and asymptotic p values are very similar.
But for small, sparse, unbalanced, and heavily tied data, the exact and asymptotic p values
can be quite different and may lead to opposite conclusions concerning the hypothesis of
interest. This was a major concern of R. A. Fisher, who stated in the preface to the first
edition of Statistical Methods for Research Workers (1925):

The traditional machinery of statistical processes is wholly unsuited to the needs of
practical research. Not only does it take a cannon to shoot a sparrow, but it misses the
sparrow! The elaborate mechanism built on the theory of infinitely large samples is not
accurate enough for simple laboratory data. Only by systematically tackling small
problems on their merits does it seem possible to apply accurate tests to practical data.

The example of a sparse  contingency table, shown in Figure 2.1, demonstrates that
Fisher’s concern was justified.

3 9×

Figure 2.1 Sparse 3 x 9 contingency table

Count

7 1 1

1 1 1 1 1 1 1

8

1

2

3

VAR1

1 2 3 4 5 6 7 8 9

VAR2

VAR1 * VAR2 Crosstabulation
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The Pearson chi-square test is commonly used to test for row and column independence.
For the above table, the results are shown in Figure 2.2.

The observed value of the Pearson’s statistic is , and the asymptotic p value
is the tail area to the right of 22.29 from a chi-square distribution with 16 degrees of
freedom. This p value is 0.134, implying that it is reasonable to assume row and column
independence. With SPSS Exact Tests, you can also compute the tail area to the right of
22.29 from the exact distribution of Pearson’s statistic. The exact results are shown in
Figure 2.3.

The exact p value obtained above is 0.001, implying that there is a strong row and col-
umn interaction. Chapter 9 discusses this and related tests in detail.

The above example highlights the need to compute the exact p value, rather than
relying on asymptotic results, whenever the data set is small, sparse, unbalanced, or
heavily tied. The trouble is that it is difficult to identify, a priori, that a given data set
suffers from these obstacles to asymptotic inference. Bishop, Fienberg, and Holland
(1975), express the predicament in the following way.

The difficulty of exact calculations coupled with the availability of normal approxi-
mations leads to the almost automatic computation of asymptotic distributions and
moments for discrete random variables. Three questions may be asked by a potential
user of these asymptotic calculations:

Figure 2.2 Pearson chi-square test results for sparse 3 x 9 table

22.286
1

16 .134
Pearson
Chi-Square

Value df

Asymp.
Sig.

(2-tailed)

Chi-Square Tests

25 cells (92.6%) have expected count less than 5.
The minimum expected count is .29.

1. 1. 25 cells (92.6%) have expected count less than 5. 
 The minimum expected count is .29.

X
2

22.29=

Figure 2.3 Exact results of Pearson chi-square test for sparse 9 x 3 table

1. 25 cells (92.6%) have expected count less than 5. The minimum
expected count is .29.

22.286
1

16 .134 .001
Pearson
Chi-Square

Value df

Asymp.
Sig.

(2-tailed)
Exact Sig.
(2-tailed)

Chi-Square Tests

25 cells (92.6%) have expected count less than 5. The
minimum expected count is .29.

1. 
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1. How does one make them? What are the formulas and techniques for getting the
answers? 

2. How does one justify them? What conditions are needed to ensure that these for-
mulas and techniques actually produce valid asymptotic results?

3. How does one relate asymptotic results to pre-asymptotic situations? How close
are the answers given by an asymptotic formula to the actual cases of interest
involving finite samples?

These questions differ vastly in the ease with which they may be answered. The
answer to (1) usually requires mathematics at the level of elementary calculus.
Question (2) is rarely answered carefully, and is typically tossed aside by a remark of
the form ‘...assuming that higher order terms may be ignored...’ Rigorous answers to
question (2) require some of the deepest results in mathematical probability theory.
Question (3) is the most important, the most difficult, and consequently the least
answered. Analytic answers to question (3) are usually very difficult, and it is more
common to see reported the result of a simulation or a few isolated numerical
calculations rather than an exhaustive answer.

The concerns expressed by R. A. Fisher and by Bishop, Fienberg, and Holland can be
resolved if you directly compute exact p values instead of replacing them with their
asymptotic versions and hoping that these will be accurate. Fisher himself suggested the
use of exact p values for  tables (1925) as well as for data from randomized
experiments (1935). SPSS Exact Tests computes an exact p value for practically every
important nonparametric test on either continuous or categorical data. This is achieved
by permuting the observed data in all possible ways and comparing what was actually
observed to what might have been observed. Thus exact p values are also known as
permutational p values. The following two sections illustrate through concrete examples
how the permutational p values are computed.

Pearson Chi-Square Test for a 3 x 4 Table
Figure 2.4 shows results from an entrance examination for fire fighters in a small township.

2 2×

Figure 2.4 Fire fighter entrance exam results

Count
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1 1

2 3 4
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Fail

Test Results
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Test Results * Race of Applicant Crosstabulation
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The table shows that all five white applicants received a Pass result, whereas the results
for the other groups are mixed. Is this evidence that entrance exam results are related to
race? Note that while there is some evidence of a pattern, the total number of observa-
tions is only twenty. Null and alternative hypotheses might be formulated for these data
as follows:

Null Hypothesis: Exam results and race of examinee are independent.

Alternative Hypothesis: Exam results and race of examinee are not independent.

To test the hypothesis of independence, use the Pearson chi-square test of independence,
available in the SPSS Crosstabs procedure. To get the results shown in Figure 2.5, the
test was conducted at the 0.05 significance level: 

Because the observed significance of 0.073 is larger than 0.05, you might conclude that
the exam results are independent of the race of the examinee. However, notice that SPSS
reports that the minimum expected frequency is 0.5, and that all 12 of the cells have an
expected frequency that is less than five.

That is, SPSS warns you that all of the cells in the table have small expected counts.
What does this mean? Does it matter?

Recall that the Pearson chi-square statistic, , is computed from the observed and
the expected counts under the null hypothesis of independence as follows:

Equation 2.1

where  is the observed count, and 

Equation 2.2

is the expected count in cell  of an  contingency table whose row margins are
, column margins are , and total sample size is .

Figure 2.5 Pearson chi-square test results for fire fighter data
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Statistical theory shows that, under the null hypothesis, the random variable 
asymptotically follows the theoretical chi-square distribution with 
degrees of freedom. Therefore, the asymptotic p value is

Equation 2.3

where  is a random variable following a chi-square distribution with 6 degrees of
freedom.

The term asymptotically means “given a sufficient sample size,” though it is not easy
to describe the sample size needed for the chi-square distribution to approximate the
exact distribution of the Pearson statistic.

One rule of thumb is: 

• The minimum expected cell count for all cells should be at least 5 (Cochran, 1954).
This rule is implicit in SPSS, as you saw from the messages produced by SPSS for the
table above. The problem with this rule is that it can be unnecessarily conservative. 

Another rule of thumb is: 

• For tables larger than , a minimum expected count of 1 is permissible as long as
no more than about 20% of the cells have expected values below 5 (Cochran, 1954).

While these and other rules have been proposed and studied, no simple rule covers all
cases. (See Agresti, 1990, for further discussion.) In our case, considering sample size,
number of cells relative to sample size, and small expected counts, it appears that relying
on an asymptotic result to compute a p value might be problematic.

What if, instead of relying on the distribution of , it were possible to use the true
sampling distribution of  and thereby produce an exact p value? Using SPSS Exact
Tests, you can do that. The following discussion explains how this p value is computed,
and why it is exact. For technical details, see Chapter 9. Consider the observed 
crosstabulation (see Figure 2.4) relative to a reference set of other  tables that are
like it in every possible respect, except in terms of their reasonableness under the null
hypothesis. It is generally accepted that this reference set consists of all  tables of
the form shown below and having the same row and column margins as Figure 2.4. (see,
for example, Fisher, 1973, Yates, 1984, Little, 1989, and Agresti, 1992).

This is a reasonable choice for a reference set, even when these margins are not naturally
fixed in the original data set, because they do not contain any information about the null
hypothesis being tested. The exact p value is then obtained by identifying all of the

9
2
9
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tables in this reference set for which Pearson’s statistic equals or exceeds 11.55556, the
observed statistic, and summing their probabilities. This is an exact p value because the
probability of any table, , in the above reference set of tables with fixed margins
can be computed exactly under the null hypothesis. It can be shown to be the
hypergeometric probability

Equation 2.4

For example, the table

is a member of the reference set. Applying Equation 2.1 to this table yields a value of
 for Pearson’s statistic. Since this value is greater than the value

, this member of the reference set is regarded as more extreme than
Figure 2.4. Its exact probability, calculated by Equation 2.4, is 0.000108, and will con-
tribute to the exact p value. The following table

is another member of the reference set. You can easily verify that its Pearson statistic is
, which is less than 11.55556. Therefore, this table is regarded as less

extreme than the observed table and does not count towards the p value. In principle,
you can repeat this analysis for every single table in the reference set, identify all those
that are at least as extreme as the original table, and sum their exact hypergeometric
probabilities. The exact p value is this sum.

SPSS Exact Tests produces the following result:

Equation 2.5
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The exact results are shown in Figure 2.6.

The exact p value based on Pearson’s statistic is 0.040. At the 0.05 level of significance,
the null hypothesis would be rejected and you would conclude that there is evidence that
the exam results and race of examinee are related. This conclusion is the opposite of the
conclusion that would be reached with the asymptotic approach, since the latter
produced a p value of 0.073. The asymptotic p value is only an approximate estimate of
the exact p value. Kendall and Stuart (1979) have proved that as the sample size goes
to infinity, the exact p value (see Equation 2.5) converges to the chi-square based p value
(see Equation 2.3). Of course, the sample size for the current data set is not infinite, and
you can observe that this asymptotic result has fared rather poorly.

Fisher’s Exact Test for a 2 x 2 Table
It could be said that Sir R. A. Fisher was the father of exact tests. He developed what is
popularly known as Fisher’s exact test for a single  contingency table. His
motivating example was as follows (see Agresti, 1990, for a related discussion). When
drinking tea, a British woman claimed to be able to distinguish whether milk or tea was
added to the cup first. In order to test this claim, she was given eight cups of tea. In four
of the cups, tea was added first, and in four of the cups, milk was added first. The order
in which the cups were presented to her was randomized. She was told that there were
four cups of each type, so that she should make four predictions of each order. The
results of the experiment are shown in Figure 2.7.
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Value df
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Exact Sig.
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Chi-Square Tests

12 cells (100.0%) have expected count less than 5. The
minimum expected count is .50.
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Figure 2.6 Exact results of the Pearson chi-square test for fire fighter data
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Given the woman’s performance in the experiment, can you conclude that she could
distinguish whether milk or tea was added to the cup first? Figure 2.7 shows that she
guessed correctly more times than not, but on the other hand, the total number of trials
was not very large, and she might have guessed correctly by chance alone. Null and
alternative hypotheses can be formulated as follows:

Null Hypothesis: The order in which milk or tea is poured into a cup and the taster’s guess
of the order are independent.

Alternative Hypothesis: The taster can correctly guess the order in which milk or tea is
poured into a cup.

Note that the alternative hypothesis is one-sided. That is, although there are two
possibilities—that the woman guesses better than average or she guesses worse than
average—we are only interested in detecting the alternative that she guesses better than
average.

The Pearson chi-square test of independence can be calculated to test this hypothesis.
This example tests the alternative hypothesis at the 0.05 significance level. Results are
shown in Figure 2.8.

Figure 2.7  Fisher’s tea-tasting experiment
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Figure 2.8 Pearson chi-square test results for tea-tasting experiment
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The reported significance, 0.157, is two-sided. Because the alternative hypothesis is
one-sided, you might halve the reported significance, thereby obtaining 0.079 as the
observed p value. Because the observed p value is greater than 0.05, you might conclude
that there is no evidence that the woman can correctly guess tea-milk order, although the
observed level of 0.079 is only marginally larger than the 0.05 level of significance used
for the test.

It is easy to see from inspection of Figure 2.7 that the expected cell count under the
null hypothesis of independence is 2 for every cell. Given the popular rules of thumb
about expected cell counts cited above, this raises concern about use of the one-degree-
of-freedom chi-square distribution as an approximation to the distribution of the Pearson
chi-square statistic for the above table. Rather than rely on an approximation that has an
asymptotic justification, suppose you can instead use an exact approach. 

For the  table, Fisher noted that under the null hypothesis of independence, if
you assume fixed marginal frequencies for both the row and column marginals, then the
hypergeometric distribution characterizes the distribution of the four cell counts in the

 table. This fact enables you to calculate an exact p value rather than rely on an
asymptotic justification.

Let the generic four-fold table, , take the form

with  being the four cell counts;  and , the row totals;  and
, the column totals; and , the table total. If you assume the marginal totals as given,

the value of  determines the other three cell counts. Assuming fixed marginals, the
distribution of the four cell counts follows the hypergeometric distribution, stated here
in terms of :

Equation 2.6

The p value for Fisher’s exact test of independence in the  table is the sum of
hypergeometric probabilities for outcomes at least as favorable to the alternative
hypothesis as the observed outcome.

Let’s apply this line of thought to the tea drinking problem. In this example, the
experimental design itself fixes both marginal distributions, since the woman was asked
to guess which four cups had the milk added first and therefore which four cups had the
tea added first. So, the table has the following general form:

2 2×

2 2×
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Focusing on , this cell count can take the values 0, 1, 2, 3, or 4, and designating a
value for  determines the other three cell values, given that the marginals are fixed.
In other words, assuming fixed marginals, you could observe the following tables with
the indicated probabilities:

The probability of each possible table in the reference set of  tables with the
observed margins is obtained from the hypergeometric distribution formula shown in
Equation 2.6. The p values shown above are the sums of probabilities for all outcomes
at least as favorable (in terms of guessing correctly) as the one in question. For example,
since the table actually observed has , the exact p value is the sum of
probabilities of all of the tables for which  equals or exceeds 3. The exact results are
shown in Figure 2.9.
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The exact result works out to . Given such a relatively large p
value, you would conclude that the woman’s performance does not furnish sufficient
evidence that she can correctly guess milk-tea pouring order. Note that the asymptotic p
value for the Pearson chi-square test of independence was 0.079, a dramatically different
number. The exact test result leads to the same conclusion as the asymptotic test result,
but the exact p value is very different from 0.05, while the asymptotic p value is only
marginally larger than 0.05. In this example, all 4 margins of the  table were fixed
by design. For the example, in “Pearson Chi-Square Test for a 3 x 4 Table” on p. 14, the
margins were not fixed. Nevertheless, for both examples, the reference set was
constructed from fixed row and column margins. Whether or not the margins of the
observed contingency table are naturally fixed is irrelevant to the method used to
compute the exact test. In either case, you compute an exact p value by examining the
observed table in relation to all other tables in a reference set of contingency tables
whose margins are the same as those of the actually observed table. You will see that the
idea behind this relatively simple example generalizes to include all of the
nonparametric and categorical data settings covered by SPSS Exact Tests.

Choosing between Exact, Monte Carlo, and Asymptotic P Values
The above examples illustrate that in order to compute an exact p value, you must
enumerate all of the outcomes that could occur in some reference set besides the
outcome that was actually observed. Then you order these outcomes by some measure
of discrepancy that reflects deviation from the null hypothesis. The exact p value is the
sum of exact probabilities of those outcomes in the reference set that are at least as
extreme as the one actually observed.

Enumeration of all of the tables in a reference set can be computationally intensive.
For example, the reference set of all  tables of the form

Figure 2.9 Exact results of the Pearson chi-square test for tea-tasting experiment
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contains 1.6 billion tables, which presents a challenging computational problem. Fortu-
nately, two developments have made exact p value computations practically feasible.
First, the computer revolution has dramatically redefined what is computationally do-
able and affordable. Second, many new fast and efficient computational algorithms have
been published over the last decade. Thus, problems that would have taken several hours
or even days to solve now take only a few minutes.

It is useful to have some idea about how the algorithms in SPSS Exact Tests work.
There are two basic types of algorithms: complete enumeration and Monte Carlo enumer-
ation. The complete enumeration algorithms enumerate every single outcome in the ref-
erence set. Thus they always produce the exact p value. Their result is essentially 100%
accurate. They are not, however, guaranteed to solve every problem. Some data sets
might be too large for complete enumeration of the reference set within given time and
machine limits. For this reason, Monte Carlo enumeration algorithms are also provided.
These algorithms enumerate a random subset of all the possible outcomes in the reference
set. The Monte Carlo algorithms provide an estimate of the exact p value, called the Mon-
te Carlo p value, which can be made as accurate as necessary for the problem at hand.
Typically, their result is 99% accurate, but you are free to increase the level of accuracy
to any arbitrary degree simply by sampling more outcomes from the reference set. Also,
they are guaranteed to solve any problem, no matter how large the data set. Thus, they
provide a robust, reliable back-up for the situations in which the complete enumeration
algorithms fail. Finally, the asymptotic p value is always available by default. 

General guidelines for when to use the exact, Monte Carlo, or asymptotic p values
include the following:

• It is wise to never report an asymptotic p value without first checking its accuracy
against the corresponding exact or Monte Carlo p value. You cannot easily predict a
priori when the asymptotic p value will be sufficiently accurate.

• The choice of exact versus Monte Carlo is largely one of convenience. The time
required for the exact computations is less predictable than for the Monte Carlo
computations. Usually, the exact computations either produce a quick answer, or
else they quickly terminate with the message that the problem is too hard for the
exact algorithms. Sometimes, however, the exact computations can take several
hours, in which case it is better to interrupt them by selecting Stop SPSS Processor
from the File menu and repeating the analysis with the Monte Carlo option. The
Monte Carlo p values are for most practical purposes just as good as the exact p
values. The method has the additional advantage that it takes a predictable amount
of time, and an answer is available at any desired level of accuracy.
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• SPSS Exact Tests makes it very easy to move back and forth between the exact and
Monte Carlo options. So feel free to experiment.

The following sections discuss the exact, Monte Carlo, and asymptotic p values in
greater detail.

When to Use Exact P Values

Ideally you would use exact p values all of the time. They are, after all, the gold stan-
dard. Only by deciding to accept or reject the null hypothesis on the basis of an exact p
value are you guaranteed to be protected from type 1 errors at the desired significance
level. In practice, however, it is not possible to use exact p values all of the time. The
algorithms in SPSS Exact Tests might break down as the size of the data set increases.
It is difficult to quantify just how large a data set can be solved by the exact algorithms,
because that depends on so many factors other than just the sample size. You can some-
times compute an exact p value for a data set whose sample size is over 20,000, and at
other times fail to compute an exact p value for a data set whose sample size is less than
30. The type of exact test desired, the degree of imbalance in the allocation of subjects
to treatments, the number of rows and columns in a crosstabulation, the number of ties
in the data, and a variety of other factors interact in complicated ways to determine if a
particular data set is amenable to exact inference. It is thus a very difficult task to specify
the precise upper limits of computational feasibility for the exact algorithms. It is more
useful to specify sample size and table dimension ranges within which the exact algo-
rithms will produce quick answers—that is, within a few seconds. Table 1.1 and Table
1.2 describe the conditions under which exact tests can be computed quickly. In general,
almost every exact test in SPSS Exact Tests can be executed in just a few seconds, pro-
vided the sample size does not exceed 30. The Kruskal-Wallis test, the runs tests, and
tests on the Pearson and Spearman correlation coefficients are exceptions to this general
rule. They require a smaller sample size to produce quick answers.

When to Use Monte Carlo P Values

Many data sets are too large for the exact p value computations, yet too sparse or
unbalanced for the asymptotic results to be reliable. Figure 2.10 is an example of such
a data set, taken from Senchaudhuri, Mehta, and Patel (1995). This data set reports the
thickness of the left ventricular wall, measured by echocardiography, in 947 athletes
participating in 25 different sports in Italy. There were 16 athletes with a wall
thickness of , which is indicative of hypertrophic cardiomyopathy. The
objective is to determine whether there is any correlation between presence of this
condition and the type of sports activity.

13mm≥
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You can obtain the results of the likelihood-ratio statistic for this  contingency ta-
ble with the Crosstabs procedure. The results are shown in Figure 2.11.

Figure 2.10 Left ventricular wall thickness versus sports activity
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Figure 2.11 Likelihood ratio for left ventricular wall thickness versus sports activity data
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The value of this statistic is 32.495. The asymptotic p value, based on the likelihood-
ratio test, is therefore the tail area to the right of 32.495 from a chi-square distribution
with 24 degrees of freedom. SPSS tells us that this p value is 0.115. But notice how
sparse and unbalanced this table is. This suggests that you ought not to rely on the
asymptotic p value. Ideally, you would like to enumerate every single 
contingency table with the same row and column margins as those in Figure 2.10,
identify tables that are more extreme than the observed table under the null hypothesis,
and thereby obtain the exact p value. This is a job for SPSS Exact Tests. However, when
you try to obtain the exact likelihood-ratio p value in this manner, SPSS Exact Tests
gives the message that the problem is too large for the exact option. Therefore, the next
step is to use the Monte Carlo option. The Monte Carlo option can generate an extremely
accurate estimate of the exact p value by sampling  tables from the reference set
of all tables with the observed margins a large number of times. The default is 10,000
times, but this can easily be changed in the dialog box. Provided each table is sampled
in proportion to its hypergeometric probability (see Equation 2.4), the fraction of
sampled tables that are at least as extreme as the observed table gives an unbiased
estimate of the exact p value. That is, if  tables are sampled from the reference set,
and  of them are at least as extreme as the observed table (in the sense of having a
likelihood-ratio statistic greater than or equal to 32.495), the Monte Carlo estimate of
the exact p value is

Equation 2.7

The variance of this estimate is obtained by straightforward binomial theory to be:

Equation 2.8

Thus, a % confidence interval for p is

Equation 2.9

where  is the th percentile of the standard normal distribution. For example, if you
wanted a 99% confidence interval for p, you would use . This is the
default in SPSS Exact Tests, but it can be changed in the dialog box. The Monte Carlo
results for these data are shown in Figure 2.12.
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The Monte Carlo estimate of 0.044 for the exact p value is based on 10,000 random
samples from the reference set, using a starting seed of 2000000. SPSS Exact Tests also
computes a 99% confidence interval for the exact p value. This confidence interval is
(0.039, 0.050). You can be 99% sure that the true p value is within this interval. The
width can be narrowed even further by sampling more tables from the reference set. That
will reduce the variance (see Equation 2.8) and hence reduce the width of the confidence
interval (see Equation 2.9). It is a simple matter to sample 50,000 times from the
reference set instead of only 10,000 times. These results are shown in Figure 2.13.

With a sample of size 50,000 and the same starting seed, 2000000, you obtain 0.045 as
the Monte Carlo estimate of p. Now the 99% confidence interval for p is (0.043, 0.047).

Figure 2.12 Monte Carlo results for left ventricular wall thickness versus sports activity data
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Figure 2.13 Monte Carlo results with sample size of 50,000
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How good are the Monte Carlo estimates? Why would you use them rather than the
asymptotic p value of 0.115? There are several major advantages to using the Monte
Carlo method as opposed to using the asymptotic p value for inference.

1. The Monte Carlo estimate is unbiased. That is, .

2. The Monte Carlo estimate is accompanied by a confidence interval within which the
exact p value is guaranteed to lie at the specified confidence level. The asymptotic p
value is not accompanied by any such probabilistic guarantee.

3. The width of the confidence interval can be made arbitrarily small, by sampling more
tables from the reference set.

4. In principle, you could narrow the width of the confidence interval to such an extent
that the Monte Carlo p value becomes indistinguishable from the exact p value up to
say the first three decimal places. For all practical purposes, you could then claim to
have the exact p value. Of course, this might take a few hours to accomplish.

5. In practice, you don’t need to go quite so far. Simply knowing that the upper bound
of the confidence interval is below 0.05, or that the lower bound of the confidence
interval is above 0.05 is satisfying. Facts like these can usually be quickly established
by sampling about 10,000 tables, and this takes only a few seconds.

6. The asymptotic p value carries no probabilistic guarantee whatsoever as to its accu-
racy. In the present example, the asymptotic p value is 0.115, implying, incorrectly,
that there is no interaction between the ventricular wall thickness and the sports ac-
tivity. The Monte Carlo estimate on the other hand does indeed establish this rela-
tionship at the 5% significance level. 

To summarize:

• The Monte Carlo option with a sample of size 10,000 and a confidence level of 99%
is the default in SPSS Exact Tests. At these default values, the Monte Carlo option
provides very accurate estimates of exact p values in a just few seconds. These de-
faults can be easily changed in the Monte Carlo dialog box.

• Users will find that even when the width of the Monte Carlo confidence interval is
wider than they’d like, the point estimate itself is very close to the exact p value.
For the fire fighters data discussed in “Pearson Chi-Square Test for a 3 x 4 Table”
on p. 14, the Monte Carlo estimate of the exact p value for the Pearson chi-square
test is shown in Figure 2.14.

E p̂( ) p=



Exact Tests 29

The result, based on 10,000 observations and a starting seed of 2000000, is 0.041. This is
much closer to the exact p value for the Pearson test, 0.040, than the asymptotic p value,
0.073. As an exercise, run the Monte Carlo version of the Pearson test on this data set a few
times with different starting seeds. You will observe that the Monte Carlo estimate changes
slightly from run to run, because you are using a different starting seed each time. However,
you will also observe that each Monte Carlo estimate is very close to the exact p value.
Thus, even if you ignored the information in the confidence interval, the Monte Carlo point
estimate itself is often good enough for routine use. For a more refined analysis, you may
prefer to report both the point estimate and the confidence interval.

• If you want to replicate someone else’s Monte Carlo results, you need to know the
starting seed used previously. SPSS Exact Tests reports the starting seed each time
you run a test. If you don’t specify your own starting seed, SPSS Exact Tests provides
one. See “How to Set the Random Number Seed” on p. 8 in Chapter 1 for information
on setting the random number seed.

When to Use Asymptotic P Values

Although the exact p value can be shown to converge mathematically to the
corresponding asymptotic p value as the sample size becomes infinitely large, this
property is not of much practical value in guaranteeing the accuracy of the asymptotic p
value for any specific data set. There are many different data configurations where the
asymptotic methods perform poorly. These include small data sets, data sets containing
ties, large but unbalanced data sets, and sparse data sets. A numerical example follows
for each of these situations.

Figure 2.14 Monte Carlo results of Pearson chi-square test for fire fighter data

11.556
1

6 .073 .041
2

.036 .046
Pearson
Chi-Square

Value df

Asymp.
Sig.

(2-tailed) Sig.
Lower
Bound

Upper
Bound

99% Confidence Interval

Monte Carlo Significance (2-tailed)

Chi-Square Tests

12 cells (100.0%) have expected count less than 5. The minimum expected count is .50.1. 

Based on 10000 and seed 2000000 ...2. 
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Small Data Sets. The data set shown in Figure 2.15 consists of the first 7 pairs of obser-
vations of the authoritarianism versus social status striving data discussed in Siegel and
Castellan (1988).

Pearson’s product-moment correlation coefficient computed from this sample is 0.7388.
This result is shown in Figure 2.16.

Suppose that you wanted to test the null hypothesis that these data arose from a population
in which the underlying Pearson’s product-moment correlation coefficient is 0, against the
one-sided alternative that authoritarianism and social status striving are positively corre-
lated. Using the techniques described in Chapter 1, you see that the asymptotic two-sided
p value is 0.058. In contrast, the exact one-sided p value is 0.037. You can conclude that
the asymptotic method does not perform well in this small data set.

Figure 2.15 Subset of authoritarianism versus social status striving data

Figure 2.16 Pearson’s product-moment correlation coefficient for social status striving data

.739 .054 2.452 .058
1

.037
Pearson’s
R

Interval by Interval

Value
Asymp.

Std. Error Approx. T
Approx.

Sig.
Exact

Significance

Symmetric Measures

Based on normal approximation1. 
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Data With Ties. The diastolic blood pressure (mm Hg) was measured on 6 subjects in a
treatment group and 7 subjects in a control group. The data are shown in Figure 2.17.

Figure 2.17  Diastolic blood pressure of treated and control groups
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The results of the two-sample Kolmogorov-Smirnov test for these data are shown in
Figure 2.18. 

Figure 2.18 Two-sample Kolmogorov-Smirnov test results for diastolic blood pressure data 
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The asymptotic two-sided p value is 0.113. In contrast, the exact two-sided p value is
0.042, less than half the asymptotic result. The poor performance of the asymptotic test
is attributable to the large number of tied observations in this data set. Suppose, for ex-
ample, that the data were free of any ties, as shown in Figure 2.19.

Figure 2.19 Diastolic blood pressure of treated and control groups, without ties
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The two-sample Kolmogorov-Smirnov results for these data, without ties, are shown in
Figure 2.20.

The asymptotic Kolmogorov-Smirnov two-sided p value remains unchanged at 0.113.
This time, however, it is much closer to the exact two-sided p value, which is 0.091. 

Figure 2.20 Two-sample Kolmogorov-Smirnov test results for diastolic blood pressure data, 
without ties
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Large but Unbalanced Data Sets

Data from a prospective study of maternal drinking and congenital sex organ malforma-
tions (Graubard and Korn, 1987) are shown in Figure 2.21 in the form of a  con-
tingency table.

The linear-by-linear association test may be used to determine if there is a dose-response re-
lationship between the average number of drinks consumed each day during pregnancy, and
the presence of a congenital sex organ malformation. The results are shown in Figure 2.22.

The asymptotic two-sided p value is 0.176. In contrast, the two-sided exact p value is
0.179. 

2 5×

Figure 2.21  Alcohol during pregnancy and birth defects

Maformation * Maternal Alcohol Consumption (drinks/day) Crosstabulation

Maternal Alcohol Consumption (drinks/day)

Count

17066 14464 788 126 37

48 38 5 1 1

Absent

Present

Malformation

0 <1 1-2 3-5 >=6

Maternal Alcohol Consumption (drinks/day)

Malformation * Maternal Alcohol Consumption (drinks/day) Crosstabulation

Figure 2.22 Results of linear-by-linear association test for maternal drinking data
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Sparse Data Sets

Data were gathered from 250 college and university administrators on various indicators
of performance like the number of applications for admittance, student/faculty ratio,
faculty salaries, average SAT scores, funding available for inter-collegiate sports, and so
forth. Figure 2.23 shows a crosstabulation of competitiveness against the student/faculty
ratio for a subset consisting of the 65 state universities that participated in the survey.

Figure 2.23 Student/faculty ratio versus competitiveness of state universities
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Figure 2.24 shows the asymptotic results of the Pearson chi-square test for these data.

Figure 2.24 Monte Carlo results for student/faculty ratio versus competitiveness data

The asymptotic p value based on the Pearson chi-square test is 0.039, suggesting that
there is an interaction between competitiveness and the student/faculty ratio. Notice,
however, that the table, though large, is very sparse. Because this data set is so large, the
Monte Carlo result, rather than the exact result, is shown. The Monte Carlo estimate of
the exact p value is 0.114. This is a three-fold increase in the p value, which suggests
that there is, after all, no interaction between competitiveness and the student/faculty
ratio at state universities.

It should be clear from the above examples that it is very difficult to predict a priori if
a given data set is large enough to rely on an asymptotic approximation to the p value. The
notion of what constitutes a large sample depends on the structure of the data and the test
being used. It cannot be characterized by any single measure. A crosstabulation created
from several thousand observations might nevertheless produce inaccurate asymptotic p
values if it possesses many cells with small counts. On the other hand, a rank test like the
Wilcoxon, performed on continuous, well-balanced data, with no ties, could produce an
accurate asymptotic p value with a sample size as low as 20. Ultimately, the best
definition of a large data set is an operational one—if a data set produces an accurate
asymptotic p value, it is large; otherwise, it is small. In the past, such a definition would
have been meaningless, since there was no gold standard by which to gauge the accuracy
of the asymptotic p value. In SPSS Exact Tests, however, either the exact p value or its
Monte Carlo estimate is readily available to make the comparison and may be used
routinely along with the asymptotic p value. 
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One-Sample Goodness-of-Fit 
Inference

This chapter discusses tests used to determine how well a data set is fitted by a specified
distribution. Such tests are known as goodness-of-fit tests. SPSS Exact Tests computes
exact and asymptotic p values for the chi-square and Kolmogorov-Smirnov tests. 

Available Tests
Table 3.1 shows the goodness-of-fit tests available in SPSS Exact Tests, the procedure
from which each can be obtained, and a bibliographical reference for each.

Chi-Square Goodness-of-Fit Test
The chi-square goodness-of-fit test is applicable either to categorical data or to
continuous data that have been pre-grouped into a discrete number of categories. In
tabular form, the data are organized as a  contingency table, where c is the number
of categories. Cell i of this  table contains a frequency count, , of the number
of observations falling into category i. Along the bottom of the table is a  vector
of cell probabilities

Equation 3.1

such that  is associated with column i. This representation is shown in Table 3.2

Table 3.1 Available tests

Test Procedure References

Chi-square Nonparametric Tests: Chi-square Siegel and Castellan (1988)
Kolmogorov-
Smirnov

Nonparametric Tests: 1 Sample K-S Conover (1980)

1 c×
1 c× Oi

1 c×( )

π π1 π2 …πc, ,( )=

πi

3
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The chi-square goodness-of-fit test is used to determine with judging if the data arose
by taking N independent samples from a multinomial distribution consisting of c
categories with cell probabilities given by . The null hypothesis

Equation 3.2

can be tested versus the general alternative that  is not true. The test statistic for the
test is

Equation 3.3

where  is the expected count in cell i. High values of  indicate lack of fit
and lead to rejection of . If  is true, asymptotically, as , the random
variable  converges in distribution to a chi-square distribution with  degrees
of freedom. The asymptotic p value is, therefore, given by the right tail of this
distribution. Thus, if  is the observed value of the test statistic , the asymptotic
two-sided p value is given by

Equation 3.4

The asymptotic approximation may not be reliable when the ’s are small. For exam-
ple, Siegel and Castellan (1988) suggest that one can safely use the approximation only
if at least 20% of the ’s equal or exceed 5 and none of the ’s are less than 1. In cases
where the asymptotic approximation is suspect, the usual procedure has been to collapse
categories to meet criteria such as those suggested by Siegel and Castellan. However,
this introduces subjectivity into the analysis, since differing p values can be obtained by
using different collapsing schemes. SPSS Exact Tests gives the exact p values without
making any assumptions about the ’s or N.

Table 3.2 Frequency counts for chi-square goodness-of-fit test

Multinomial Categories Row 
Total

1 2 ... c

Cell Counts ... N

Cell Probabilities ... 1

O1 O2 Oc

π1 π2 πc

π

H0: O1 O2 …Oc, ,( ) Multinomial π N,( )∼

H0

X
2

Oi Ei–( )2 Ei⁄
i 1=

c

∑=

Ei Nπi= X
2

H0 H0 N ∞→
X2 c 1–( )

x
2

X
2

p̃2 Pr χ
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x
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Ei
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The exact p value is computed in SPSS Exact Tests by generating the true distribution
of  under . Since there is no approximation, there is no need to collapse categories,
and the natural categories for the data can be maintained. Thus, the exact two-sided p
value is given by

Equation 3.5

Sometimes a data set is too large for the exact p value to be computed, yet there might
be reasons why the asymptotic p value is not sufficiently accurate. For these situations,
SPSS Exact Tests provides a Monte Carlo estimate of the exact p value. This estimate is
obtained by generating M multinomial vectors from the null distribution and counting
how many of them result in a test statistic whose value equals or exceeds , the test
statistic actually observed. Suppose that this number is m. If so, a Monte Carlo estimate
of  is

Equation 3.6

A 99% confidence interval for  is then obtained by standard binomial theory as

Equation 3.7

A technical difficulty arises when either  or . Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on  is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. If

, an  confidence interval for the exact p value is

Equation 3.8

Similarly, when , an  confidence interval for the exact p value is

Equation 3.9

SPSS Exact Tests uses default values of  and . While these
defaults can be easily changed, they provide quick and accurate estimates of exact p
values for a wide range of data sets.

X
2

H0

p2 Pr χ2 x2≥( )=

x2

p2

p̂2
m M⁄=

p2

CI p̂2 2.576 p̂2( ) 1 p̂2–( ) M⁄±=

p̂2 0= p̂2 1=

σ̂

p̂2 0= α%

CI 0 1 1 α 100⁄–( )1 M⁄
–[ , ]=

p̂2 1= α%

CI 1 α 100⁄–( )1 M⁄
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M 10000= α 99%=
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Example: A Small Data Set

Table 3.3 shows the observed counts and the multinomial probabilities under the null
hypothesis for a multinomial distribution with four categories.

The results of the exact chi-square goodness-of-fit test are shown in Figure 3.1

The value of the chi-square goodness-of-fit statistic is 8.0. Referring this value to a chi-
square distribution with 3 degrees of freedom yields an asymptotic p value

 

However, there are many cells with small counts in the observed  contingency
table. Thus, the asymptotic approximation is not reliable. In fact, the exact p value is

Table 3.3 Frequency counts from a multinomial distribution with four categories

Multinomial 
Categories

Row 
Total

1 2 3 4

Cell Counts 7 1 1 1 10

Cell Probabilities 0.3 0.3 0.3 .0.1 1

CATEGORY

7 3.0 4.0

1 3.0 -2.0

1 3.0 -2.0

1 1.0 .0

10

1

2

3

4

Total

Observed N Expected N Residual

Test Statistics

8.000 3 .046 .052 .020CATEGORY

Chi-Square
1

df Asymp. Sig. Exact Sig.
Point

Probability

4 cells (100.0%) have expected frequencies less than 5. The minimum
expected cell frequency is 1.0.

1. 

Figure 3.1 Chi-square goodness-of-fit results

p̃2 Prχ3
2

8.0≥( ) 0.046= =

1 4×

p2 Pr χ2
8.0≥( ) 0.0523= =
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SPSS Exact Tests also provides the point probability that the test statistic equals 8.0.
This probability, 0.0203, is a measure of the discreteness of the exact distribution of .
Some statisticians advocate subtracting half of this point probability from the exact p
value, and call the result the mid-p value. 

Because of its small size, this data set does not require a Monte Carlo analysis.
However, results obtained from a Monte Carlo analysis are more accurate than results
produced by an asymptotic analysis. Figure 3.2 shows the Monte Carlo estimate of the
exact p value based on a Monte Carlo sample of 10,000.

The Monte Carlo estimate of the exact p value is 0.0493, which is much closer to the exact
p value of 0.0523 than the asymptotic result. But a more important benefit of the Monte
Carlo analysis is that we also obtain a 99% confidence interval. In this example, with a
Monte Carlo sample of 10,000, the interval is (0.0437, 0.0549). This interval could be
narrowed by sampling more multinomial vectors from the null distribution. To obtain
more conclusive evidence that the exact p value exceeds 0.05 and thus is not statistically

χ2

CATEGORY

7 3.0 4.0

1 3.0 -2.0

1 3.0 -2.0

1 1.0 .0

10

1

2

3

4

Total

Observed N Expected N Residual

Test Statistics

8.000 3 .046 .0492 .044 .055CATEGORY

Chi-Square
1

df Asymp. Sig. Sig. Lower Bound Upper Bound

99% Confidence Interval

Monte Carlo Sig.

4 cells (100.0%) have expected frequencies less than 5. The minimum expected cell
frequency is 1.0.

1. 

Based on 10000 sampled tables with starting seed 2000000.2. 

Figure 3.2 Monte Carlo results for chi-square test
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significant at the 5% level, 100,000 multinomial vectors can be sampled from the null
distribution. The results are shown in Figure 3.3.

This time, the Monte Carlo estimate is 0.0508, almost indistinguishable from the exact
result. Moreover, the exact p value is guaranteed, with 99% confidence, to lie within the
interval (0.0490, 0.0525). We are now 99% certain that the exact p value exceeds 0.05.

Example: A Medium-Sized Data Set

This example shows that the chi-square approximation may not be reliable even when
the sample size is as large as 50, has only three categories, and has cell counts that satisfy
the Siegel and Castellan criteria discussed on p. 40. Table 3.4 displays data from Radlow
and Alt (1975) showing observed counts and multinomial probabilities under the null
hypothesis for a multinomial distribution with three categories.

Figure 3.4 shows the results of the chi-square goodness-of-fit test on these data.

Table 3.4 Frequency counts from a multinomial distribution with three categories

Multinomial 
Categories

Row 
Total

1 2 3

Cell counts 12 7 31 50

Cell Probabilities 0.2 0.3 0.5 1

Test Statistics

8.000 3 .046 .0512 .049 .053CATEGORY

Chi-Square
1

df Asymp. Sig. Sig. Lower Bound Upper Bound

99% Confidence Interval

Monte Carlo Sig.

4 cells (100.0%) have expected frequencies less than 5. The minimum expected cell
frequency is 1.0.

1. 

Based on 100000 sampled tables with starting seed 2000000.2. 

Figure 3.3 Monte Carlo results for chi-square test with 100,000 samples
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Notice that the asymptotic approximation gives a p value of 0.0472, while the exact p
value is 0.0507. Thus, at the 5% significance level, the asymptotic value erroneously
leads to rejection of the null hypothesis, despite the reasonably large sample size, the
small number of categories, and the fact that  for .

One-Sample Kolmogorov Goodness-of-Fit Test
The one-sample Kolmogorov test is used to determine if it is reasonable to model a data
set consisting of independent identically distributed (i.i.d.) observations from a
completely specified distribution. SPSS Exact tests offers this test for the normal,
uniform, and Poisson distributions. 

Multinomial Categories

12 10.0 2.0

7 15.0 -8.0

31 25.0 6.0

50

1

2

3

Total

Observed N Expected N Residual

Test Statistics

6.107

2

.047

.051

.002

Chi-Square1

df

Asymp. Sig.

Exact Sig.

Point Probability

Multinomial
Categories

0 cells (.0%) have expected frequencies less than
5. The minimum expected cell frequency is 10.0.

1. 

Figure 3.4 Chi-square goodness-of-fit results for medium-sized data set
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The data consist of N i.i.d. observations, , from an unknown distribution
; i.e. . Let  be a completely specified distribution. The

Kolmogorov test is used to test the null hypothesis

 Equation 3.10

 can be tested against either a two-sided alternative or a one-sided alternative. The
two-sided alternative is

Equation 3.11

Two one-sided alternative hypotheses can be specified. One states that F is stochastically
greater than G. That is,

 Equation 3.12

The other one-sided alternative states the complement, that G is stochastically greater
than F. That is,

 Equation 3.13

The test statistics for testing  against either , , or  are all functions of the
specified distribution, , and the empirical cumulative density function (c.d.f.),

, is derived from the observed values, . The test statistic for testing
 against  is

 Equation 3.14

The test statistic for testing  against  is

 Equation 3.15

The test statistic for testing  against  is

 Equation 3.16

Kolmogorov derived asymptotic distributions as , for T, , and . For small
N, the exact p values provided by SPSS Exact Tests are appropriate. If  is a discrete
distribution, the exact p values can be computed using the method described by Conover
(1980). If  is a continuous distribution, the exact p value can be computed using
the results given by Durbin (1973).

ui u2 …uN,( , )
G u( ) G u( ) Pr U u≤( )= F u( )

H0:G u( ) F u( )for all u=

H0

H1:G u( ) F u( )for at least one value of u≠

H1a:G u( ) F u( )for at least one value of u<

H1b:F u( ) G u( )for at least one value of u<

H0 H1 H1a H1b
F u( )
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T sup
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+
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Example: Testing for a Uniform Distribution

This example is taken from Conover (1980). A random sample size of 10 is drawn from
a continuous distribution. The sample can be tested to determine if it came from a uniform
continuous distribution with limits of 0 and 1. Figure 3.5 shows the data displayed n the
Data Editor. 

We can run the Kolmogorov-Smirnov test to determine if the sample was generated by
a uniform distribution. The results are displayed in Figure 3.6.

The exact exact two-sided p value is 0.311. The asymptotic two-sided p value is 0.3738.

Figure 3.5 Data to test for a uniform distribution

One-Sample Kolmogorov-Smirnov Test

10 0 0 .289 .289 -.229 .914 .374 .311 .000VALUE

N Minimum Maximum

Uniform Parameters
1,2

Absolute Positive Negative

Most Extreme Differences

Kolmogorov-
Smirnov Z

Asymp.
Sig.

(2-tailed)

Exact
Significance

(2-tailed)
Point

Probability

Test distribution is Uniform.1. 

User-Specified2. 

Figure 3.6 Kolmogorov-Smirnov results
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One-Sample Inference for 
Binary Data

This chapter discusses two statistical procedures for analyzing binary data in SPSS
Exact Tests. First, it describes exact hypothesis testing and exact confidence interval
estimation for a binomial probability. Next, it describes the runs test (also known as
the Wald-Wolfowitz one-sample runs test) for determining if a sequence of binary
observations is random. You will see that although the theory underlying the runs test
is based on a binary sequence, the test itself is applied more generally to non-binary
observations. For this reason, the data are transformed automatically in SPSS Exact
Tests from a non-binary to a binary sequence prior to executing the test.

Available Tests
Table 4.1 shows the tests for binary data available in SPSS Exact Tests, the procedure
from which each can be obtained, and a bibliographical reference for each.

Binomial Test and Confidence Interval
The data consist of t successes and  failures in N independent Bernoulli trials.
Let  be the true underlying success rate. Then the outcome  has the binomial
probability

Equation 4.1

Table 4.1 Available tests

Test Procedure Reference

Binomial test Nonparametric Tests: Binomial Test Conover (1971)
Runs test Nonparametric Tests: Runs Test Lehmann (1975

N t–
π T t=

Pr T t π=( ) N
t 

  πt
1 π–( )N t–

=

4
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SPSS Exact Tests computes the observed proportion , which is also the maximum-

likelihood estimate of , as

To test the null hypothesis

Equation 4.2

SPSS Exact Tests computes the following one- and two-sided p values:

Equation 4.3

and

Equation 4.4

Example: Pilot Study for a New Drug

Twenty patients were treated in a pilot study of a new drug. There were four responders
(successes) and 16 non-responsive (failures). The binomial test can be run to test the null
hypothesis that .

These data can be entered into the Data Editor using a response variable with 20 cases.
If successes are coded as 1’s, and failures are coded as 0’s, response contains sixteen
cases with a value of 0, and four cases with a value of 1.

The binomial test performed on these data produces the results displayed in Figure 4.1.

The exact one-sided p value is 0.0159, so the null hypothesis that  is rejected
at the 5% significance level.

π̂
π

π̂ t N⁄=

H0:π πo=

p
1

min Pr T t πo≤( ) Pr T t πo≥( ){ , }=

p
2

2*p1=

π 0.05=

Figure 4.1 Binomial test results for drug study

Success 4 .2 .05 .016 .013

Failure 16 .80

20 1.00

Group 1
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Total
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to Drug

Category N
Observed

Prop.
Test
Prop.

Exact Sig.
(1-tailed)

Point
Probability

π 0.05=
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Runs Test
Consider a sequence of N binary outcomes, , where each  is either a 0 or
a 1. A run is defined as a succession of identical numbers that are followed and preceded
by a different number, or no number at all. For example, the sequence

(1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1)

begins with a run of two 1’s. A run of three 0’s follows, and next a run of one 1. Then
comes a run of four 0’s, followed by a run of two 1’s which in turn is followed by a run
of one 0. Finally, there is a run of one 1. In all, there are seven runs in the above
sequence. Let the random variable R denote the number of runs in a binary sequence
consisting of m 1’s and n 0’s, where . The Wald-Wolfowitz runs test is used
to test the null hypothesis

: The sequence of m 1’s and n 0’s, , was generated by N independent
Bernoulli trials, each with a probability  of generating a 1 and a probability

 of generating a 0.

Very large or very small values of R are evidence against . In order to determine what
constitutes a very large or a very small run, the distribution of R is needed. Although
unconditionally the distribution of R depends on , this nuisance parameter can be
eliminated by working with the conditional distribution of R, given that there are m 1’s
and n 0’s in the sequence. This conditional distribution can be shown to be

Equation 4.5

and

Equation 4.6
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Suppose that r is the observed value of the random variable R. The two-sided exact p
value is defined as 

Equation 4.7

where  is the expected value of R.

If a data set is too large for the computation shown in Equation 4.7 to be feasible, these
p values can be estimated very accurately using Monte Carlo sampling. 

For large data sets, asymptotic normality can be invoked. Let r denote the observed
value of the random variable R,  if , and  if

. Then the statistic

Equation 4.8

is normally distributed with a mean of 0 and a variance of 1.

The above exact, Monte Carlo, and asymptotic results apply only to binary data. How-
ever, you might want to test for the randomness of any general data series ,
where the ’s are not binary. In that case, the approach suggested by Lehmann (1975)
is to replace each  with a corresponding binary transformation

 Equation 4.9

where  is the median of the observed data series. The median is calculated in the fol-
lowing way. Let  be the observed data series sorted in ascending
order. Then

Equation 4.10

Once this binary transformation has been made, the runs test can be applied to the binary
data, as illustrated in the following data set. In addition to the median, the mean, mode,
or any specified value can be selected as the cut-off for the runs test.

p
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Example: Children’s Aggression Scores

Figure 4.2 displays in the Data Editor the aggression scores for 24 children from a
study of the dynamics of aggression in young children. These data appear in Siegel
and Castellan (1988).

Figure 4.3 shows the results of the runs test for these data.

To obtain these results, SPSS Exact Tests uses the median of the 24 observed scores
(25.0) as the cut-off for transforming the data into a binary sequence in accordance with
Equation 4.8. This yields the binary sequence

(1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0).

Notice that this binary sequence of 12 1’s and 12 0’s contains 10 runs. SPSS Exact Tests
determines that all permutations of the 12 1’s and 12 0’s would yield anywhere between
a minimum of 2 runs and a maximum of 24 runs. The exact two-sided p value, or

Figure 4.2 Aggression scores in order of occurrence

25.00 12 12 24 10 -1.044 .297 .301 .081SCORE
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Value
Total
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(2-tailed)

Exact
Significance

(2-tailed)
Point

Probability

Median1. 

Figure 4.3 Runs test results for aggression scores data
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probability of obtaining 10 or fewer runs, is 0.301 and does not indicate any significant
departure from randomness. 

If the data set had been larger, it would have been difficult to compute the exact test,
and you would have had to either rely on the asymptotic results or estimate the exact p
values using the Monte Carlo option. Figure 4.4 shows Monte Carlo estimates of the
exact p values for the runs test based on 10,000 random permutations of the 12 0’s and
12 1’s in a binary sequence of 24 numbers. Each permutation is assigned an equally
likely probability given by .

Notice that the Monte Carlo two-sided p value, 0.298, is extremely close to the exact p
value, 0.310. But more importantly, the Monte Carlo method produces a 99%
confidence interval within which the exact two-sided p value is guaranteed to lie. In this
example, the interval is (0.286, 0.310), which again demonstrates conclusively that the
null hypothesis of a random data series cannot be rejected.

Example: Small Data Set

Here is a small hypothetical data set illustrating the difference between the exact and
asymptotic inference for the runs test. The data consists of a binary sequence of ten
observations

 (1, 1, 1, 1, 0, 0, 0, 0, 1, 1) 

with six 1’s and four 0’s. Thus, there are 3 runs in this sequence. The results of the runs
test are displayed in Figure 4.5. 

24! 12!12!( )⁄ 1 2704156⁄( )=

Figure 4.4 Monte Carlo results for runs test for aggression scores data
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Notice that the asymptotic two-sided p value is 0.106, while the exact two-sided p value
is 0.071. 

1.00 4 6 10 3 -1.616 .106 .071 .038SCORE
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Point

Probability

Median1. 

Figure 4.5 Runs test results for small data set
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Two-Sample Inference: 
Paired Samples

The tests in this section are commonly applied to matched pairs of data, such as when
several individuals are being studied and two repeated measurements are taken on each
individual. The objective is to test the null hypothesis that both measurements came
from the same population. The inference is complicated by the fact that the two obser-
vations on the same individual are correlated, while there is independence across the
different individuals being studied. In this setting, SPSS Exact Tests provides statistical
procedures for both continuous and categorical data. For matched pairs of continuous
data (possibly with ties) SPSS Exact Tests provides the sign test and the Wilcoxon
signed-ranks test. For matched pairs of binary outcomes, SPSS Exact Tests provides the
McNemar test. For matched pairs of ordered categorical outcomes, SPSS Exact Tests
generalizes from the McNemar test to the marginal homogeneity test.

Available Tests
Table 5.1 shows the available tests for paired samples, the procedure from which they
can be obtained, and a bibliographical reference for each test. 

Table 5.1 Available tests  

Test Procedure Reference

Sign test Nonparametric Tests:
Two-Related-Samples Tests

Sprent (1993)

Wilcoxon signed-ranks test Nonparametric Tests: 
Two-Related-Samples Tests

Sprent (1993)

McNemar test Nonparametric Tests: 
Two-Related-Samples Tests

Siegel and Castellan 
(1988)

Marginal homogeneity test Nonparametric Tests: 
Two-Related-Samples Tests

Agresti (1990)

5



58 Chapter 5

When to Use Each Test

The tests in this chapter have the common feature that they are applicable to data sets
consisting of pairs of correlated data. The goal is to test if the first member of the pair
has a different probability distribution from the second member. The choice of test is
primarily determined by the type of data being tested: continuous, binary, or categorical.

Sign test. This test is used when observations in the form of paired responses arise from
continuous distributions (possibly with ties), but the actual data are not available to us.
Instead, all that is provided is the sign (positive or negative) of the difference in responses
of the two members of each pair.

Wilcoxon signed-ranks test. This test is also used when observations in the form of paired
responses arise from continuous distributions (possibly with ties). However, you now
have the sign of the difference. You also have its rank in the full sample of response dif-
ferences. If this additional information is available, the Wilcoxon signed-ranks test is
more powerful than the sign test.

McNemar test. This test is used to test the equality of binary response rates from two
populations in which the data consist of paired, dependent responses, one from each
population. It is typically used in a repeated measures situation, in which each subject’s
response is elicited twice, once before and once after a specified event (treatment) occurs.
The test then determines if the initial response rate (before the event) equals the final
response rate (after the event).

Marginal homogeneity test. This test generalizes the McNemar test from binary response
to multinomial response. Specifically, it tests the equality of two  multinomial
response vectors. Technically, the response could be ordered or unordered. However,
the methods developed in the present release of SPSS Exact Tests apply only to ordered
response. The data consist of paired, dependent responses, one from population 1 and
the other from population 2. Each response falls into one of c ordered categories. The
data are arranged in the form of a square  contingency table in which an entry in
cell (i, j) signifies that the response of one member of the dependent pair fell into
category i, while the response of the second member fell into category j. A typical
application of the test of marginal homogeneity is a repeated measures situation in
which each subject’s ordered categorical response is elicited twice, once before and
once after a specified event (treatment) occurs. The test then determines if the response
rates in the c ordered categories are altered by the treatment. See Agresti (1990) for
various model-based approaches to this problem. SPSS Exact Tests provides a
nonparametric solution using the generalized Mantel-Haenszel approach suggested by
Kuritz, Landis, and Koch (1988). See also White, Landis, and Cooper (1982).

c 1×

c c×
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Statistical Methods
For all the tests in this chapter, the data consist of correlated pairs of observations. For
some tests, the observations are continuous (possibly with ties), while for others the
observations are categorical. Nevertheless, in all cases, the goal is to test the null
hypothesis that the two populations generating each pair of observations are identical.
The basic permutation argument for testing this hypothesis is the same for all the tests.
By this argument, if the null hypothesis were true, the first and second members of each
pair of observations could just as well have arisen in the reverse order. Thus, each pair
can be permuted in two ways, and if there are N pairs of observations, there are 
equally likely ways to permute the data. By actually carrying out these permutations,
you can obtain the exact distribution of any test statistic defined on the data. 

Sign Test and Wilcoxon Signed-Ranks Test
The data consist of N paired observations , where the X
and Y random variables are correlated, usually through a matched-pairs design. Define
the N differences

Omit from further consideration all pairs with a zero difference. Assume that for all
. The following assumptions are made about the distribution of the random

variables :

1. The distribution of each  is symmetric.

2. The ’s are mutually independent.

3. The ’s have the same median.

Let the common median of the N ’s be denoted by λ. The null hypothesis is

There are two one-sided alternative hypotheses of the form

and

The two-sided alternative hypothesis is that either  or  holds, but you cannot
specify which.

2N

x1 y1,( ) x2 y2,( ) … xN yN,( ), , ,

di xi yi–= , i 1 2 … N, , ,=

i di 0>,
Di

Di

Di

Di

Di

H0:λ 0=

H1:λ 0>

H'1:λ 0<

H1 H'1
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To test these hypotheses, utilize permutational distributions of tests statistics derived
from either the signs or the signed ranks of the N differences. Let the absolute values of
the observed paired differences, arranged in ascending order, be

and let

be corresponding ranks (mid-ranks in the case of tied data). Specifically, if there are 
observations tied at the jth smallest absolute value, you assign to all of them the rank

Equation 5.1

For the Wilcoxon signed-ranks test, inference is based on the permutational distribution
of the test statistic

Equation 5.2

whose observed value is

Equation 5.3

where  is the indicator function. It assumes a value of 1 if its argument is true and 0
otherwise. In other words,  is the minimum of ranks of the positive differences and
the ranks of the negative differences among the N observed differences.

Sometimes you do not know the actual magnitude of the difference but only have its
sign available to us. In that case, you cannot rank the differences and so compute the
Wilcoxon signed-ranks statistic. However, you can still use the information present in
the sign of the difference and perform the sign test. For the sign test, inference is based
on the permutational distribution of the test statistic

Equation 5.4
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whose observed value is 

Equation 5.5

In other words,  is the count of the number of positive differences among the N
differences.

The permutational distributions of  and  under the null hypothesis are
obtained by assigning positive or negative signs to the N differences in all possible ways.
There are  such possible assignments, corresponding to the reference set

Equation 5.6

and each assignment has equal probability, , under the null hypothesis. SPSS Exact
Tests uses network algorithms to enumerate the reference set in Equation 5.6 in order to
compute exact p values. 

From Equation 5.2 and standard binomial theory, the mean of  is

Equation 5.7

and the variance of  is

Equation 5.8

From Equation 5.4 and standard binomial theory, the mean of  is

Equation 5.9

and the variance of  is 

Equation 5.10
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For notational convenience, you can drop the subscript and let T denote either the
statistic for the sign test or the statistic for the Wilcoxon signed-ranks test. The p value
computations that follow are identical for both tests, with the understanding that T
denotes  when the Wilcoxon signed-ranks test is being computed and denotes 
when the sign test is being computed. In either case, you can now denote the
standardized test statistic as

Equation 5.11

The two-sided asymptotic p value is defined, by the symmetry of the normal distribu-
tion, to be double the one-sided p value:

Equation 5.12

The exact one-sided p value is defined as 

Equation 5.13

where t is the observed value of T. The potential to misinterpret a one-sided p value
applies in the exact setting, as well as in the asymptotic case. The exact two-sided p
value is defined to be double the exact one-sided p value:

Equation 5.14

This is a reasonable definition, since the exact permutational distribution of T is sym-
metric about its mean.

The one-sided Monte-Carlo p value is obtained as follows. First, suppose that
, so that you are estimating the right tail of the exact distribution. You sample

M times from the reference set (Γ) of  possible assignments of signs to the ranked
data. Suppose that the ith sample generates a value  for the test statistic. Define the
random variable
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An unbiased Monte Carlo point estimate of the one-sided p value is 

Equation 5.15

Next, if , so that you are estimating the left tail of exact distribution, the random
variable is defined by

The Monte Carlo point estimate of the one-sided p value is once again given by
Equation 5.15. 

A 99% confidence interval for the exact one-sided p value is

Equation 5.16

The constant in the above equation, 2.576, is the upper 0.005 quantile of the standard
normal distribution. It arises because SPSS Exact Tests chooses a 99% confidence
interval for the p value as its default. However, you can easily choose any confidence
level for the Monte Carlo estimate of the p value. Ordinarily, you would not want to
lower the level of the Monte Carlo confidence interval to below the 99% default, since
there should be a high assurance that the exact p value is contained in the confidence
interval.

A technical difficulty arises when either  or . Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An alter-
native approach in this extreme situation is to invert an exact binomial hypothesis test.
It can be easily shown that if , an α% confidence interval for the exact p value is

Equation 5.17

Similarly, when , an α% confidence interval for the exact p value is

Equation 5.18

By symmetry, the two-sided Monte Carlo p value is twice the one-sided p value:

Equation 5.19
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You can show that the variance of the two-sided Monte Carlo p value is four times as
large as the variance of the corresponding one-sided Monte Carlo p value. The
confidence interval for the true two-sided p value can thus be adjusted appropriately,
based on the increased variance.

Example: AZT for AIDS

The data shown in Figure 5.1, from Makutch and Parks (1988), document the response
of serum antigen level to AZT in 20 AIDS patients. Two sets of antigen levels are
provided for each patient: pre-treatment, represented by preazt, and post-treatment,
represented by postazt. 

Figure 5.1 Response of serum antigen level to AZT
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Figure 5.2 shows the results for the Wilcoxon signed-ranks test.

The test statistic is the smaller of the two sums of ranks, which is 12. The exact one-sided
p value is 0.001, about half the size of the asymptotic one-sided p value. To obtain the
asymptotic one-sided p value, divide the asymptotic two-sided p value, 0.004, by 2
( ). If this data set had been extremely large, you might have preferred
to compute the Monte Carlo estimate of the exact p value. The Monte Carlo estimate
shown in Figure 5.3 is based on sampling 10,000 times from the reference set Γ, defined
by Equation 5.6.

Ranks

Figure 5.2 Wilcoxon signed-ranks test results for AZT data

Test Statistics1

1. Wilcoxon Signed Ranks Test
2. Based on negative ranks.

2
1

6.00 12.00

14
2

8.86 124.00

43

20

Negative
Ranks

Positive
Ranks

Ties

Total

Serum Antigen Level
Post AZT - Serum
Antigen Level (pg/ml)
Pre-AZT

N Mean Rank Sum of Ranks

Ranks

Serum Antigen Level Post AZT < Serum Antigen Level (pg/ml) Pre-AZT1. 

Serum Antigen Level Post AZT > Serum Antigen Level (pg/ml) Pre-AZT2. 

Serum Antigen Level Post AZT = Serum Antigen Level (pg/ml) Pre-AZT3. 

-2.896
2

.004 .002 .001 .000

Serum
Antigen
Level
Post
AZT -
Serum
Antigen
Level
(pg/ml)
Pre-AZT

Z

Asymp.
Sig.

(2-tailed)

Exact
Significance

(2-tailed)
Exact Sig.
(1-tailed)

Point
Probability

Test Statistics1

Wilcoxon Signed Ranks Test1. 

Based on negative ranks.2. 

Test Statistics1

0.004( ) 2⁄ 0.002=



66 Chapter 5

The Monte Carlo point estimate of the exact one-sided p value is 0.001, very close to the
exact answer. Also, the Monte Carlo confidence interval guarantees with 99% confidence
that the true p value is in the range (0.0002, 0.0018). This guarantee is unavailable with
the asymptotic method; thus, the Monte Carlo estimate would be the preferred option for
large samples.

Next, the exact sign test is run on these data. The results are displayed in Figure 5.4.

Figure 5.3 Monte Carlo results of Wilcoxon signed-ranks test for AZT data
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The exact one-sided p value is 0.002. Notice that the exact one-sided p value for the sign
test, while still extremely significant, is nevertheless larger than the corresponding exact
one-sided p value for the Wilcoxon signed-ranks test. Since the sign test only takes into
account the signs of the differences and not their ranks, it has less power than the
Wilcoxon signed-ranks test. This accounts for its higher exact p value. The corresponding
asymptotic inference fails to capture this distinction.

Figure 5.4 Sign test results for AZT data
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McNemar Test
The McNemar test (Siegel and Castellan, 1988; Agresti, 1990) is used to test the
equality of binary response rates from two populations in which the data consist of
paired, dependent responses, one from each population. It is typically used in a repeated
measurements situation in which each subject’s response is elicited twice, once before
and once after a specified event (treatment) occurs. The test then determines if the initial
response rate (before the event) equals the final response rate (after the event). Suppose
two binomial responses are observed on each of N individuals. Let be the count of
the number of individuals whose first and second responses are both positive. Let 
be the count of the number of individuals whose first and second responses are both
negative. Let  be the count of the number of individuals whose first response is
positive and whose second response is negative. Finally, let  be the count of the
number of individuals whose first response is negative and whose second response is
positive. Then the McNemar test is defined on a single  table of the form

Let  denote the four cell probabilities for this table. The null
hypothesis of interest is

The McNemar test depends only on the values of the off-diagonal elements of the 
table. Its test statistic is

Equation 5.20

Now let y represent any generic  contingency table, and suppose that x is the 
table actually observed. The exact permutation distribution of the test statistic (see
Equation 5.20) is obtained by conditioning on the observed sum of off-diagonal terms,
or discordant pairs, 

The reference set is defined by

Equation 5.21
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Under the null hypothesis, the conditional probability, , of observing any 
is binomial with parameters . Thus,

Equation 5.22

and the probability that the McNemar statistic equals or exceeds its observed value
, is readily evaluated as 

Equation 5.23

the sum being taken over all . The probability that the McNemar statistic is less than
or equal to  is similarly obtained. The exact one-sided p value is then defined as

Equation 5.24

You can show that the exact distribution of the test statistic  is symmetric about
0. Therefore, the exact two-sided p value is defined as double the exact one-sided p value:

Equation 5.25

In large samples, the two-sided asymptotic p value is calculated by a  approximation
with a continuity correction, and 1 degree of freedom, as shown in Equation 5.26.

Equation 5.26

The definition of the one-sided p value for the exact case as the minimum of the left and
right tails must be interpreted with caution. It should not be concluded automatically,
based on a small one-sided p value, that the data have yielded a statistically significant
outcome in the direction originally hypothesized. It is possible that the population
difference occurs in the opposite direction from what was hypothesized before gathering
the data. The direction of the difference can be determined from the sign of the test
statistic, calculated as shown in Equation 5.27.

Equation 5.27

You should examine the one-sided p value as well as the sign of the test statistic before
drawing conclusions from the data. 

P y( ) y Γ∈
0.5 Nd,( )

P y ( )
0.5( )

NdNd!

y12!y21!
--------------------------=

MC x( )

Pr MC y( ) MC x( )≥( ) P y ( )

MC y( ) MC x( )≥
∑=

y Γ∈
MC x( )

p1 min Pr MC y ( ) MC x ( )≤( ) Pr MC y ( ) MC x ( )≥( ),{ }=

MC y ( )

p2 2p1=

χ2

χ2 y12 y21– 1–( )2

Nd

----------------------------------------=

MC y( ) y12 y21–=



70 Chapter 5

Example: Voters’ Preference

The following data are taken from Siegel and Castellan (1988). The crosstabulation
shown in Figure 5.5 shows changes in preference for presidential candidates before and
after a television debate.

The results of the McNemar test for these data are shown in Figure 5.6.

The exact one-sided p value is 0.132. Notice that the value of the McNemar statistic,
, has a positive sign. This indicates that of the 20 ( ) discordant pairs, more

switched preferences from Carter to Reagan (13) than from Reagan to Carter (7). The
point probability, 0.074, is the probability that .

Figure 5.5 Crosstabulation of preference for presidential candidates before and after TV 
debate
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Figure 5.6 McNemar test results
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Marginal Homogeneity Test
The marginal homogeneity test (Agresti, 1990) is an extension of the McNemar test
from two categories to more than two categories. The data are thus defined on a square

 contingency table in which the row categories represent the first member of a pair
of correlated observations, and the column categories represent the second member of
the pair. In SPSS Exact Tests, the categories are required to be ordered. The data are thus
represented by a  contingency table with entry  in row i and column j. This
entry is the count of the number of pairs of observations in which the first member of
the pair falls into ordered category i and the second member into ordered category j. Let

 be the probability that the first member of the matched pair falls in row j. Let  be
the probability that the second member of the matched pair falls in column j. The null
hypothesis of marginal homogeneity states that

In other words, the probability of being classified into category j is the same for the first
as well as the second member of the matched pair.

The marginal homogeneity test for ordered categories can be formulated as a
stratified  contingency table. The theory underlying this test, the definition of its
test statistic, and the computation of one- and two-sided p values are discussed in Kuritz,
Landis, and Koch (1988). 

Example: Matched Case-Control Study of Endometrial Cancer

Figure 5.7, taken from the Los Angeles Endometrial Study (Breslow and Day, 1980),
displays a crosstabulation of average doses of conjugated estrogen between cases and
matched controls.

c c×

c c× xij( )

πj π’j

H0:πj π’j  for all j,= 1 2 …c, ,=

2 c×

Figure 5.7 Crosstabulation of dose for cases with dose for controls
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In this matched pairs setting, the test of whether the cases and controls have the same
exposure to estrogen, is equivalent to testing the null hypothesis that the row margins
and column margins come from the same distribution. The results of running the exact
marginal homogeneity test on these data are shown in Figure 5.8.

The p values are extremely small, showing that the cases and controls have significantly
different exposures to estrogen. The null hypothesis of marginal homogeneity is rejected.

Example: Pap-Smear Classification by Two Pathologists

This example is taken from Agresti (1990). Two pathologists classified the Pap-smear
slides of 118 women in terms of severity of lesion in the uterine cervix. The classifica-
tions fell into five ordered categories. Level 1 is negative, Level 2 is atypical squamous
hyperplasia, Level 3 is carcinoma in situ, Level 4 is squamous carcinoma, and Level 5 is
invasive carcinoma. Figure 5.9 shows a crosstabulation of level classifications between
two pathologists.

Figure 5.8 Marginal homogeneity results for cancer data
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Figure 5.9 Crosstabulation of Pap-smear classifications by two pathologists
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The question of interest is whether there is agreement between the two pathologists. One
way to answer this question is through the measures of association discussed in Part 4.
Another way is to run the test of marginal homogeneity. The results of the exact
marginal homogeneity test are shown in Equation 5.10.

The exact two-sided p value is 0.307, indicating that the classifications by the two
pathologists are not significantly different. Notice, however, that there is a fairly large
difference between the exact and asymptotic p values because of the sparseness in the
off-diagonal elements.

Figure 5.10 Results of marginal homogeneity test
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Two-Sample Inference: 
Independent Samples

This chapter discusses tests based on two independent samples of data drawn from two
distinct populations. The objective is to test the null hypothesis that the two populations
have the same response distributions against the alternative that the response distribu-
tions are different. The data could also arise in randomized clinical trials in which each
subject is assigned randomly to one of two treatments. The goal is to test whether the
treatments differ with respect to their response distributions. Here it is not necessary to
make any assumptions about the underlying populations from which these subjects
were drawn. Lehmann (1975) has demonstrated clearly that the same statistical meth-
ods are applicable whether the data arose from a population model or a randomization
model. Thus, no distinction will be made between the two ways of gathering the data.

There are important differences between the structure of the data for this chapter and
the previous one. The data in this chapter are independent both within a sample and
across the two samples, whereas the data in the previous chapter consisted of N
matched (correlated) pairs of observations with independence across pairs. Moreover,
in the previous chapter, the sample size was required to be the same for each sample,
whereas in this chapter, the sample size may differ, with  being the size of sample

. 

Available Tests
Table 6.1 shows the available tests for two independent samples, the procedure from
which they can be obtained, and a bibliographical reference for each test.

Table 6.1 Available tests

Test Procedure Reference

Mann-Whitney test Nonparametric Tests: Two Independent 
Samples

Sprent (1993)

Kolmogorov-Smirnov test Nonparametric Tests: Two Independent 
Samples

Conover (1980)

Wald-Wolfowitz runs test Nonparametric Tests: Two Independent 
Samples

Gibbons (1985)

nj
j 1 2,=

6
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When to Use Each Test

The tests in this chapter deal with the comparison of samples drawn from the two distri-
butions. The null hypothesis is that the two distributions are the same.

The choice of test depends on the type of alternative hypothesis you are interested in
detecting.

Mann-Whitney test. The Mann-Whitney test, or Wilcoxon rank-sum test, is one of the
most popular two-sample tests. It is generally used to detect “shift alternatives.” That is,
the two distributions have the same general shape, but one of them is shifted relative to
the other by a constant amount under the alternative hypothesis. This test has an asymp-
totic relative efficiency of 95.5% relative to the Student’s t test when the underlying
populations are normal.

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test is a distribution-free test for the
equality of two distributions against the general alternative that they are different. Be-
cause this test attempts to detect any possible deviation from the null hypothesis, it will
not be as powerful as the Mann-Whitney test if the alternative is that one distribution is
shifted with respect to the other. One-sided forms of the Kolmogorov-Smirnov test can
be specified and are powerful against the one-sided alternative that one distribution is
stochastically larger than the other.

Wald-Wolfowitz runs test. The Wald-Wolfowitz runs test is a competitor to the Kolmogorov-
Smirnov test for testing the equality of two distributions against general alternatives. It will
not be powerful against specific alternatives such as the shift alternative, but it is a good
test when no particular alternative hypothesis can be specified. This test is even more
general than the Kolmogorov-Smirnov test in the sense that it has no one-sided version.

Statistical Methods
The data for all of the tests in this chapter consist of two independent samples, each of
size , , where . These N observations can be represented in the
form of the one-way layout shown in Table 6.2.

Table 6.2 One-way layout for two independent samples

Samples

1 2

.

.

.

.

.

.
.
.
.

nj j 1 2,= n1 n2 N=+

u11 u12
u21 u22

un22

un11
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This table, denoted by u, displays the observed one-way layout of raw data. The obser-
vations in u arise from continuous univariate distributions (possibly with ties). Let the
formula

Equation 6.1

denote the distribution from which the  observations displayed in column j of the one-
way layout were drawn. The goal is to test the null hypothesis

Equation 6.2

The observations in u are independent both within and across columns. In order to test
 by nonparametric methods, it is necessary to replace the original observations in the

one-way layout with corresponding scores. These scores represent various ways of rank-
ing the data in the pooled sample of size N. Different tests utilize different scores. Let

 be the score corresponding to . Then the one-way layout, in which the original
data have been replaced by scores, is represented by Table 6.3.

This table, denoted by w, displays the observed one-way layout of scores. Inference
about  is based on comparing this observed one-way layout to others like it, in which
the individual  elements are the same but they occupy different rows and columns.
In order to develop this idea more precisely, let the set W denote the collection of all pos-
sible two-column one-way layouts, with  elements in column 1 and  elements in
column 2, whose members include w and all its permutations. The random variable 
is a permutation of w if it contains precisely the same scores as w, but these scores have
been rearranged so that, for at least one  pair, the scores  and  are
interchanged.

Table 6.3 One-way layout with scores replacing original data

Samples

1 2

.

.

.

.

.

.
.
.
.

Fj v( ) Pr V v j≤( ) j 1 2,=,=

nj

H0: F1 F2=

H0

wij uij

w11 w12
w21 w22

wn22

wn11

H0
wij

n1 n2
w̃

i( j ) i’ j’,( ), , wi j, wi’ j’,
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Formally, let

Equation 6.3

where  is a random variable, and w is a specific value assumed by it. 
To clarify these concepts, let us consider a simple numerical example. Let the

original data come from two independent samples of size 5 and 3, respectively. These
data are displayed as the one-way layout shown in Table 6.4.

As you will see in “Mann-Whitney Test” on p. 80, in order to perform the Mann-
Whitney test on these data, the original data must be replaced by their ranks. The one-
way layout of observed scores, based on replacing the original data with their ranks, is
displayed in Table 6.5.

This one-way layout of ranks is denoted by w. It is the one actually observed. Notice that
two observations were tied at 27 in u. Had they been separated by a small amount, they
would have ranked 3 and 4. But since they are tied, the mid-rank  is
used as the rank for each of them in w. The symbol W represents the set of all possible
one-way layouts whose entries are the eight numbers in w, with five numbers in column
1 and three numbers in column 2. Thus, w is one member of W. (It is the one actually
observed.) Another member is , representing a different permutation of the numbers
in w, as shown in Table 6.6.

Table 6.4 One-way layout of original data

Samples

1 2

27 38
30 9
55 27
72
18

Table 6.5 One-way layout with ranks replacing original data

Samples

1 2

3.5 6
5 1
7 3.5
8
2

W w̃: w̃ w or ,= w̃ is a permutation of w{ }=

w̃

3 4+( ) 2⁄ 3.5=

w'
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All of the test statistics in this chapter are univariate functions of . Let the test sta-
tistic be denoted by  and its observed value be denoted by . The func-
tional form of  will be defined separately for each test, in subsequent sections of
this chapter. Following is a discussion of how the null distribution of T may be derived
in general, and how it is used for p value computations.

The Null Distribution of T

In order to test the null hypothesis, , you need to derive the distribution of T under
the assumption that  is true. This distribution is obtained by the following permuta-
tional argument:

If  is true, every member  has the same probability of being observed.

Lehmann (1975) has shown that the above permutational argument is valid whether the
data were gathered independently from two populations or by assigning N subjects to
two treatments in accordance with a predetermined randomization rule. No distinction
is made between these two ways of gathering the data, although one usually applies to
observational studies and the other to randomized clinical trials. 

It follows from the above permutational argument that the exact probability of ob-
serving any  is

Equation 6.4

which does not depend on the specific way in which the original one-way layout, w, was
permuted. Then

Equation 6.5

Table 6.6 Permutation of the observed one-way layout of scores

Samples

1 2

6 5
1 8

3.5 7
3.5
2

w̃ W∈
T w̃( ) T≡ t w( ) t≡

T w̃( )

H0
H0

H0 w̃ W∈

w̃ W∈

h w̃( )
Πi 1=

2
n1!

N!
----------------------=

Pr T t=( ) h w̃( )

T w̃( ) t=

∑=
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the sum being taken over all . Similarly, the right-tail of the distribution of T is
obtained as

Equation 6.6

The probability distribution of T and its tail areas are obtained in SPSS Exact Tests by
fast numerical algorithms. In large samples, you can obtain an asymptotic approxima-
tion for Equation 6.6. Different approximations apply to the different tests in this chapter
and are discussed in the section dealing with the specific tests.

P Value Calculations

The p value is the probability, under , of obtaining a value of the test statistic at least
as extreme as the one actually observed. This probability is computed as the tail area of
the null distribution of the test statistic. The choice of tail area, left-tail, right-tail, or two-
tails, depends on whether you are interested in a one- or two-sided p value, and also on
the type of alternative hypothesis you want to detect. The three statistical tests discussed
in this chapter are all different in this respect. For the Mann-Whitney test, both one- and
two-sided p values are defined, and they are computed as left, right, or two-tailed
probabilities, depending on the alternative hypothesis. For the Kolmogorov-Smirnov
test, the p values are computed from the right tail as two-sided p values, depending on
how the test statistic is defined. Finally, for the Wald-Wolfowitz runs test, only two-
sided p values exist, and they are always computed from the left tail of the null
distribution of the test statistic. Because of these complexities, it is more useful to define
the p value for each test when the specific test is discussed.

Mann-Whitney Test
The Mann-Whitney test is one of the most popular nonparametric two-sample tests.
Indeed, the original paper by Frank Wilcoxon (1945), in which this test was first
presented, is one of the most widely referenced statistical papers of all time. For a detailed
discussion of this test, see Lehmann (1975). It is assumed that sample 1 consists of 
observations drawn from the distribution  and that sample 2 consists of 
observations drawn for the distribution . The null hypothesis is given by Equation 6.2.
The Wilcoxon test is especially suited to detecting departures from the null hypothesis,
in which  is shifted relative to  according to the alternative hypothesis

Equation 6.7

w̃ W∈

Pr T t≥( ) h w̃( )

T w̃( ) t≥

∑=

H0

n1
F1 n2

F2

F2 F1

H1: F2 v( ) F1 v θ–( )=



Two-Sample Inference: Independent Samples 81

The shift parameter  is unknown. If it can be specified a priori that  must be either
positive or negative, the test is said to be one-sided, and a one-sided p value can be used
to decide whether to reject . On the other hand, when it is not possible to specify a
priori what the sign of  ought to be, the test is said to be two-sided. In that case, the
two-sided p value is used to decide if  can be rejected. 

Before specifying how the one- and two-sided p values are computed, the test statistic
 must be defined. The first step is to replace the raw data, u, by corresponding

scores, w. For the Mann-Whitney test, the score, , replacing the original observation,
, is simply the rank of that  in the pooled sample of  observations.

If there are no ties among the ’s, the N ranks thus substituted into the one-way layout
will simply be some permutation of the first N integers. If there are ties in the data, how-
ever, use mid-ranks instead of ranks.

In order to define the mid-ranks formally, let  denote the
pooled sample of all of the N observations in u, represented as a single row of data sorted
in ascending order. To allow for the possibility of ties, let there be g distinct observations
among the sorted ’s with  distinct observations being equal to the smallest value,

 distinct observations being equal to the second smallest value,  distinct
observations being equal to the third smallest value, and so forth, until finally  distinct
observations are equal to the largest value. It is now possible to define the mid-ranks
precisely. For , the distinct mid-rank assumed by all the  observations
tied in the lth smallest position is .

Finally, you can determine the , and hence the corresponding , with which
each  is associated. You can then substitute the appropriate  in place of the  in
the one-way layout u. In this manner you replace u, the original one-way layout of raw
data, with w, the corresponding one-way layout of mid-ranks, whose individual
elements, , are the appropriate members of the set of the g distinct mid-ranks
( ). The set W of all possible permutations w is defined by Equation 6.3.

The Wilcoxon rank-sum test statistic for the first column (or sample), , is
defined as the sum of mid-ranks of the first column (or sample) in the two-way layout,

. That is, for any ,

Equation 6.8

Its mean is

Equation 6.9
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its variance is

Equation 6.10

and its observed value is 

Equation 6.11

The Wilcoxon rank-sum test statistic for the second column (or sample) is defined
similarly.

In its Mann-Whitney form, this observed statistic is defined by subtracting off a
constant:

Equation 6.12

In SPSS, the Wilcoxon rank-sum statistic corresponding to the column with the smaller
Mann-Whitney statistic is displayed and used as the test statistic.

Exact P Values

The Wilcoxon rank-sum test statistic, T, is considered extreme if it is either very large
or very small. Large values of T indicate a departure from the null hypothesis in the
direction , while small values of T indicate a departure from the null hypothesis in
the opposite direction, . Whenever the test statistic possesses a directional
property of this type, it is possible to define both one- and two-sided p values. The exact
one-sided p value is defined as

Equation 6.13

and the exact two-sided p value is defined as

Equation 6.14
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Monte Carlo P Values

When exact p values are too difficult to compute, you can estimate them by Monte Carlo
sampling. The following steps show how you can use Monte Carlo to estimate the exact p
value given by Equation 6.14. The same procedure can be readily adapted to Equation 6.13.

1. Generate a new one-way layout of scores by permuting the original layout, w, in one
of the  equally likely ways.

2. Compute the value of the test statistic T for the permuted one-way layout. 

3. Define the random variable

Equation 6.15

Repeat the above steps a total of M times to generate the realizations ( ) for
the random variable Z. Then an unbiased estimate of  is 

Equation 6.16

Next, let 

Equation 6.17

be the sample standard deviation of the ’s. Then a 99% confidence interval for the exact
p value is

Equation 6.18

A technical difficulty arises when either  or . Now the sample standard
deviation is 0 but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on  is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be easily shown that if , an % confidence interval for the exact p value is

Equation 6.19
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Similarly, when , an % confidence interval for the exact p value is

Equation 6.20

SPSS Exact Tests uses default values of  and . While these
defaults can be easily changed, they provide quick and accurate estimates of exact p
values for a wide range of data sets.

Asymptotic P Values

The one- and two-sided p values are obtained by computing the normal approximations
to Equation 6.13 and Equation 6.14, respectively. Thus, the asymptotic one-sided p value
is defined as

Equation 6.21

and the asymptotic two-sided p value is defined as

Equation 6.22

where is the tail area to the left of z from a standard normal distribution, and 
is the standard deviation of T, obtained by taking the square root of 7.10.

Example: Blood Pressure Data

The diastolic blood pressure (mm Hg) was measured on 4 subjects in a treatment group
and 11 subjects in a control group. Figure 6.1 shows the data displayed in the Data Editor.
The data consist of two variables—pressure is the diastolic blood pressure of each
subject, and group indicates whether the subject was in the experimentally treated group
or the control group. 
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The Mann-Whitney test is computed for these data. The results are displayed in Figure 6.2.

Figure 6.1 Diastolic blood pressure of treated and control groups

Figure 6.2 Mann-Whitney results for diastolic blood pressure data
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The Mann-Whitney statistic for the treated group, calculated by Equation 6.12, is 35.0
and for the control group is 9.0. Thus, the Wilcoxon rank-sum statistic for the control
group is used. The observed Wilcoxon rank-sum statistic is 75. The Mann-Whitney U
statistic is 9.0. The exact one-sided p value, 0.054, is not statistically significant at the
5% level. In this data set, the one-sided asymptotic p value, calculated as one-half of the
two-sided p value, 0.085, is 0.0427. This value does not accurately represent the exact
p value and would lead you to the erroneous conclusion that the treatment group is sig-
nificantly different from the control group at the 5% level of significance.

Although it is not necessary for this small data set, you can compute the Monte Carlo
estimate of the exact p value. The results of the Monte Carlo analysis, based on 10,000
random permutations of the original one-way layout, are displayed in Figure 6.3.

Observe that the Monte Carlo estimate, 0.056, agrees very closely with the exact p value
of 0.054. Now observe that with 10,000 Monte Carlo samples, the exact p value is
contained within the limits (0.050, 0.062) with 99% confidence. Since the threshold p
value, 0.05, falls on the boundary of this interval, it appears that 10,000 Monte Carlo
samples are insufficient to conclude that the observed result is not statistically
significant. Accordingly, to confirm the exact results, you can next perform a Monte
Carlo analysis with 30,000 permutations of the original one-way layout. The results are
shown in Figure 6.4. This time, the 99% confidence interval is much tighter and does
indeed confirm with 99% confidence that the exact p value exceeds 0.05.

Figure 6.3 Monte Carlo results for diastolic blood pressure data
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Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test is applicable in more general settings than the Mann-
Whitney test. Both are tests of the null hypothesis (see Equation 6.2). However, the
Kolmogorov-Smirnov test is a universal test with good power against general
alternatives in which  and  can differ in both shape and location. The Mann-
Whitney test has good power against location shift alternatives of the form shown in
Equation 6.7. 

The Kolmogorov-Smirnov test is a two-sided test having good power against the al-
ternative hypothesis

Equation 6.23

The Kolmogorov-Smirnov statistics used for testing the hypothesis in Equation 6.23 can
now be defined. These statistics are all functions of the empirical cumulative density
function (CDF) for  and the empirical CDF for . “Statistical Methods” on p. 76
stated that the test statistics in this chapter are all functions of the one-way layout, w,
displayed in Table 6.3, in which the original data have been replaced by appropriate
scores. Indeed, this is true here as well, since you could use the original data as scores
and construct an empirical CDF for each of the two samples of data. In that case, you
would use  as the one-way layout of scores. Alternatively, you could first convert
the original data into ranks, just like those for the Mann-Whitney test, and then construct
an empirical CDF for each of the two samples of ranked data. Hajek (1969) has
demonstrated that in either case, the same inferences can be made. Thus, the
Kolmogorov-Smirnov test is classified as a rank test. However, for the purpose of
actually computing the empirical CDF’s and deriving test statistics from them, it is often
more convenient to work directly with raw data instead of first converting them into
ranks (or mid-ranks, in the case of ties). Accordingly, let u be the actually observed one-

Figure 6.4 Monte Carlo results with 30,000 samples for diastolic blood pressure data

9.000 75.000 -1.720 .085 .104
2

.102
3

.098 .107 .056
3

.053 .059
Diastolic
Blood
Pressure

Mann-Whitney
U

Wilcoxon
W Z

Asymp.
Sig.

(2-tailed)

Exact Sig.
[2*(1-tailed

Sig.)] Sig.
Lower
Bound

Upper
Bound

99% Confidence
Interval

Monte Carlo Sig. (2-tailed)

Sig.
Lower
Bound

Upper
Bound

99% Confidence
Interval

Monte Carlo Sig. (1-tailed)

Test Statistics1

Grouping Variable: Treatment Group1. 

Not corrected for ties.2. 

Based on 30000 sampled tables with starting seed 20000003. 

Test Statistics1

1. Grouping Variable: Treatment Group
2. Not corrected for ties.
3. Based on 3000 sampled tables with starting seed 20000000.

F1 F2

H2:  F2 v( ) F1 v( )  for at least one value of v,≠
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way layout of data, depicted in Table 6.2, and let w, the corresponding one-way layout
of scores, also be u. Thus, the entries in Table 6.3 are the original ’s. Now let
( ) denote the observations from the first sample sorted in
ascending order, and let ( ) denote the observations from the second
sample, sorted in ascending order. These sorted observations are often referred to as the
order statistics of the sample. The empirical CDF for each distribution is computed from
its order statistics. Before doing this, some additional notation is needed to account for
the possibility of tied observations. Among the  order statistics in the jth sample,

, let there be  distinct order statistics, with  observations all tied for
first place,  observations all tied for second place, and so on until finally, 
observations are all tied for last place. Obviously, . Let
( ) represent the  distinct order statistics of sample .
You can now compute the empirical CDF’s,  for  and  for , as shown below.
For , define

The test statistic for testing the null hypothesis (see Equation 6.2) against the two-sided
alternative hypothesis (see Equation 6.23) is the Kolmogorov-Smirnov Z and is defined as

Equation 6.24

where T is defined as

Equation 6.25

and the observed value of T is denoted by t. The exact two-sided p value for testing
Equation 6.2 against Equation 6.23 is

Equation 6.26

When the exact p value is too difficult to compute, you can resort to Monte Carlo sam-
pling. The Monte Carlo estimate of  is denoted by . It is computed as shown below:

1. Generate a new one-way layout of scores by permuting the original layout of raw
data, u, in one of the  equally likely ways.

2. Compute the value of the test statistic  for the permuted one-way layout. 

uij
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3. Define the random variable

Equation 6.27

Repeat the above steps a total of M times to generate the realizations  for
the random variable Z. Then an unbiased estimate of  is 

Equation 6.28

Next, let 

Equation 6.29

be the sample standard deviation of the ’s. Then a 99% confidence interval for the
exact p value is

Equation 6.30

A technical difficulty arises when either  or . Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on  is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be easily shown that if , an % confidence interval for the exact p value is

Equation 6.31

Similarly, when , an % confidence interval for the exact p value is

Equation 6.32

SPSS Exact Tests uses default values of M=10000 and =99%. While these defaults
can be easily changed, they provide quick and accurate estimates of exact p values for a
wide range of data sets.
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The asymptotic two-sided p value, , is based on the following limit theorem:

Equation 6.33

Although the right side of Equation 6.33 has an infinite number of terms, in practice you
need to compute only the first few terms of the above expression before convergence is
achieved. 

Example: Effectiveness of Vitamin C

These data are taken from Lehmann (1975). The effectiveness of vitamin C in orange
juice and synthetic ascorbic acid was compared in 20 guinea pigs (divided at random
into two groups). Figure 6.5 shows the data displayed in the Date Editor. There are two
variables in these data—score represents the results, in terms of length of odontoblasts
(rounded to the nearest integer) after six weeks; source indicates the source of the vita-
min C, either orange juice or ascorbic acid.

The results of the two-sample Kolmogorov-Smirnov test for these data are shown in
Figure 6.6.

p̂2

Pr n1n2 n1 n2+( )⁄ T z≤( )
n1 n2, ∞→

lim 1 2 1–( )i 1– e 2i2z2–

i 1=

∞

∑–=

Figure 6.5 Effectiveness of vitamin C in orange juice and ascorbic acid
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The exact two-sided p value is 0.045. This demonstrates that, despite the small sample
size, there is a statistically significant difference between the two forms of vitamin C
administration. The corresponding asymptotic p value equals 0.055, which is not
statistically significant. It has been demonstrated in several independent studies (see, for
example, Goodman, 1954) that the asymptotic result is conservative. This is borne out
in the present example.

Wald-Wolfowitz Runs Test
The Wald-Wolfowitz runs test is a competitor to the Kolmogorov-Smirnov test for
testing the null hypothesis

Equation 6.34

Figure 6.6 Two-sample Kolmogorov-Smirnov results for orange juice and ascorbic acid data
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against the alternative hypothesis

Equation 6.35

The test is completely general, in the sense that no distributional assumptions need to be
made about  and . Thus, it is referred to as an omnibus, or distribution-free, test. 

Suppose the data consist of the one-way layout displayed as Table 6.2. The Wald-
Wolfowitz test statistic is computed in the following steps:

1. Sort all  observations in ascending order, and position them in a single
row represented as .

2. Replace each observation in the above row with the sample identifier 1 if it came
from the first sample and 2 if it came from the second sample.

3. A run is defined as a succession of identical numbers that are followed and preceded
by a different number or no number at all. The test statistic, T, for the Wald-Wolfowitz
test is the number of runs in the above row of 1’s and 2’s.

Under the null hypothesis, you expect the sorted list of observations to be well mixed
with respect to the sample 1 and sample 2 identifiers. In that case, you will see a large
number of runs. On the other hand, if observations from  tend to be smaller than those
from , you expect the sorted list to lead with the sample 1 observations and be
followed by the sample 2 observations. In the extreme case, there will be only two runs.
Likewise, if the observations from  tend to be smaller than those from , you expect
the sorted list to lead with the sample 2 observations and be followed by the sample 1
observations. Again, in the extreme case, there will be only two runs. These
considerations imply that the p value for testing  against the omnibus alternative 
should be the left tail of the random variable, T, at the observed number of runs, t. That
is, the exact p value is given by

Equation 6.36

The distribution of T is obtained by permuting the observed one-way layout in all
possible ways and assigning the probability (see Equation 6.4) to each permutation. You
can also derive this distribution theoretically using the same reasoning that was used in
“Runs Test” on p. 51 in Chapter 4; the Monte Carlo p value, , and the asymptotic p
value, , can be obtained similarly, using the results described in this section. 

Example: Discrimination against Female Clerical Workers

The following example uses a subset of data published by Gastwirth (1991). In
November, 1983, a female employee of Shelby County Criminal Court filed a charge of
discrimination in pay between similarly qualified male and female clerical workers.

H2:  F1 v( ) F2 v( ) for at least one v≠

F1 F2

N n1 n2+=
a 1[ ] a 2[ ] … a N[ ]≤ ≤ ≤( )

F1
F2

F2 F1

H0 H1

p1 Pr T t≤( )=

p̃1

p̃1
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Figure 6.7 shows the data displayed in the Data Editor. Salary represents the starting
salaries of nine court employees hired between 1975 and 1979, and gender indicates the
gender of the employee.

A quick visual inspection of these data reveals that in no case was a female paid a higher
starting salary than a male hired for a comparable position. Consider these data to clarify
how the Wald-Wolfowitz statistic is obtained.

The table below consists of two rows. The first row contains the nine observations
sorted in ascending order. The second row contains the sample identifier for each obser-
vation: 1 if female and 2 if male.

By the above definition, there are only two runs in these data. Notice, however, that there
is a tie in the data. One observation from the first sample and one from the second sam-
ple are both tied with a value of 600. Therefore, you could also represent the succession
of observations and their sample identifiers as shown below.

Now there are four runs in the above succession of sample identifiers. First, there is a
run of five 1’s. Then a run of a single 2, followed by a run of a single 1. Finally, there is
a run of two 2’s.

The liberal value of the Wald-Wolfowitz test statistic is the one yielding the smallest
number of runs after rearranging the ties in all possible ways. This is denoted by .
The conservative value of the Wald-Wolfowitz test statistic is the one yielding the largest

458 500 525 550 576 600 600 700 886
1 1 1 1 1 1 2 2 2

458 500 525 550 576 600 600 700 886
1 1 1 1 1 2 1 2 2

Figure 6.7 Starting monthly salaries (in dollars) of nine court clerical workers

tmin
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number of runs after rearranging the ties in all possible ways. This is denoted by .
SPSS Exact Tests produces two p values,

Equation 6.37

and

Equation 6.38

Conservative decisions are usually made with . For the clerical workers data set,
the output of the Wald-Wolfowitz test is shown in Figure 6.8.

When ties are broken in all possible ways, the minimum number of runs is 2, and the
maximum is 4. The smallest possible exact p value is thus . The largest
possible exact p value is . In the interest of being as conservative as
possible, this is clearly the one to report. It implies that you cannot reject the null
hypothesis that .

Median Test
The two-sample version of the median test is identical in every respect to the k-sample
version discussed in Chapter 8. Please refer to the discussion of the median test in
Chapter 8 and substitute K = 2 if there are only two samples.
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Figure 6.8 Wald-Wolfowitz runs test for clerical workers data
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K-Sample Inference: 
Related Samples

This chapter discusses tests based on K related samples, each of size N. It is a
generalization of the paired-sample problem described in Chapter 5. The data consist of
N independent  vectors or blocks of observations in which there is dependence
among the K components of each block. The dependence can arise in various ways. Here
are a few examples:

• There are K repeated measurements on each of N subjects, possibly at different time
points, once after each of K treatments has been applied to the subject.

• There are K subjects within each of N independent matched sets of data, where the
matching is based on demographic, social, medical or other factors that are a priori
known to influence response and are not, therefore, under investigation.

• There are K distinct judges, all evaluating the same set of N applicants and assigning
ordinal scores to them.

Many other possibilities exist for generating K related samples of data. In all of these
settings, the objective is to determine if the K populations from which the data arose
are the same. Tests of this hypothesis are often referred to as blocked comparisons to
emphasize that the data consist of N independent blocks with K dependent observations
within each block. SPSS Exact Tests provides three tests for this problem: Friedman’s,
Cochran’s Q, and Kendall’s W, also known as Kendall’s coefficient of concordance.

Available Tests
Table 7.1 shows the available tests for related samples, the procedure from which they
can be obtained, and a bibliographical reference for each test.

K 1×

7
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Table 7.1 Available tests

When to Use Each Test

Friedman’s test. Use this test to compare K related samples of data. Each observation con-
sists of a  vector of correlated values, and there are N such observations, thus
forming an  two-way layout.

Kendall’s W test. This test is completely equivalent to Friedman’s test. The only
advantage of this test over Friedman’s is that Kendall’s W has an interpretation as the
coefficient of concordance, a popular measure of association. (See also Chapter 14).

Cochran’s Q test. This test is identical to Friedman’s test but is applicable only to the
special case where the responses are all binary. 

Statistical Methods
The observed data for all of the tests in this chapter are represented in the form of a two-
way layout, shown in Table 7.2.

Test Procedure Reference

Friedman’s test Nonparametric Tests:
Tests for Several Related Samples

Lehmann (1975)

Kendall’s W test Nonparametric Tests: 
Tests for Several Related Samples

Conover (1975)

Cochran’s Q test Nonparametric Tests: 
Tests for Several Related Samples

Lehmann (1975)

Table 7.2 Two-way layout for K related samples

Block Treatments

Id 1 2 ... K

1 ...
2 ...
.
.
.

.

.

.

.

.

.

... .
.
.

N ...

1 K×
N K×

u11 u12 ulK
u21 u22 u2K

uN1 uN2 uNK
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This layout consists of N independent blocks of data with K correlated observations within
each block. The data are usually continuous (possibly with ties). However, for the
Cochran’s Q test, the data are binary. Various test statistics can be defined on this two-way
layout. Usually, however, these test statistics are defined on ranked data rather than on the
original raw data. Accordingly, first replace the K observations, in block
i with corresponding ranks, . If there were no ties among these , you
would assign the first K integers , not necessarily in order, as the ranks of
these K observations. If there are ties, you would assign the average rank or mid-rank to
the tied observations. Specifically, suppose that the K observations of the first block take
on  distinct values, with  of the observations being equal to the smallest value, 
to the next smallest,  to the third smallest, and so on. Similarly, the K observations in
the second block take on  distinct values, with  of the observations being equal to
the smallest value,  to the next smallest,  to the third smallest, and so on. Finally,
the K observations in the Nth block take on  distinct values, with  of the
observations being equal to the smallest value,  to the next smallest,  to the third
smallest, and so on. It is now possible to define the mid-ranks precisely. For

, the  distinct mid-ranks in the ith block, sorted in ascending order, are

Equation 7.1

You can now replace the original observations, , in the ith block with
corresponding mid-ranks, , where each  is the appropriate selection
from the set of distinct mid-ranks . The modified two-way
layout is shown in Table 7.3.

Table 7.3 Two-way layout for mid-ranks for K related samples

Block Treatments

Id 1 2 K
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As an example, suppose that K = 5, there are two blocks, and the two-way layout of the
raw data (the ’s) is as shown in Table 7.4.

For the first block, , with , , . Using Equation 7.1, you
can obtain mid-ranks , , and . For the second block,

, with , . Thus, you obtain mid-ranks  and
. You can now use these mid-ranks to replace the original  values with

corresponding  values. The modified two-way layout, in which raw data have been
replaced by mid-ranks, is displayed as Table 7.5.

All of the tests discussed in this chapter are based on test statistics that are functions of
the two-way layout of mid-ranks displayed in Table 7.3. Before specifying these test
statistics, define the rank-sum for any treatment j as

Equation 7.2

the average rank-sum for treatment j as

Equation 7.3

and the average rank-sum across all treatments as

Equation 7.4

Table 7.4 Two-way layout with two blocks of raw data

Block Treatments

ID 1 2 3 4 5

1 1.3 1.1 1.1 1.6 1.1
2 1.9 1.7 1.9 1.9 1.7

Table 7.5 Sample two-way layout with raw data replaced by mid-ranks

Block Treatments

ID 1 2 3 4 5

1 4 2 2 5 2
2 4 1.5 4 4 1.5

uij

e1 3= d11 3= d12 1= d13 1=
r∗11 2= r∗12 4= r∗13 5=

e2 2= d21 2= d22 3= r∗21 1.5=
r∗21 4= uij

rij

rj rij

i 1=

N

∑=

r. j

rj

N
----=

r..

K

j 1=
r.j∑

K
----------------------------

K 1+
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-------------= =
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The test statistics for Friedman’s, Kendall’s W, and Cochran’s Q tests, respectively, are
all functions of , , and . The functional form for each test differs, and is defined
later in this chapter in the specific section that deals with the test. However, regardless
of its functional form, the exact probability distribution of each test statistic is obtained
by the same permutation argument. This argument and the corresponding definitions of
the one- and two-sided p values are given below.

Let T denote the test statistic for any of the tests in this chapter, and test the null
hypothesis

Equation 7.5

If  is true, the K mid-ranks, , belonging to block i could have been
obtained in any order. That is, any treatment could have produced any mid-rank, and
there are K! equally likely ways to assign the K mid-ranks to the K treatments. If you
apply the same permutation argument to each of the N blocks, there are  equally
likely ways to permute the observed mid-ranks such that the permutations are only
carried out within each block but never across the different blocks. That is, there are

 equally likely permutations of the original two-way layout of mid-ranks, where
only intra-block permutations are allowed. Each of these permutations thus has a

 probability of being realized and leads to a specific value of the test statistic.
The exact probability distribution of T can be evaluated by enumerating all of the
permutations of the original two-way layout of mid-ranks. If t denotes the observed
value of T in the original two-way layout, then

Equation 7.6

the sum being taken over all possible permutations of the original two-way layout of
mid-ranks which are such that T = t. The probability distribution (see Equation 7.6) and
its tail areas are obtained in SPSS Exact Tests by fast numerical algorithms. The exact
two-sided p value is defined as

Equation 7.7

When Equation 7.7 is too difficult to obtain by exact methods, it can be estimated by
Monte Carlo sampling, as shown in the following steps:

1. Generate a new two-way layout of mid-ranks by permuting each of the N blocks of
the original two-way layout of mid-ranks (see Table 7.3) in one of K! equally likely
ways.

rij r.j r..

H0:  There is no difference in the K treatments

H0 ri1 ri2 …riK, ,( )

K!( )N

K!( )N

K!( ) N–

Pr T t=( ) K!( ) N–

T t=
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p2 Pr T t≥( ) K!( ) N–

T t≥
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2. Compute the value of the test statistic T for the new two-way layout. Define the ran-
dom variable 

Equation 7.8

3. Repeat steps 1 and 2 a total of M times to generate the realizations  for
the random variable Z. Then an unbiased estimate of  is 

Equation 7.9

Next, let 

Equation 7.10

be the sample standard deviation of the ’s. Then a 99% confidence interval for the ex-
act p value is:

Equation 7.11

A technical difficulty arises when either  or . Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on  is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be easily shown that if , an % confidence interval for the exact p value is

Equation 7.12

Similarly, when , an % confidence interval for the exact p value is

Equation 7.13

SPSS Exact Tests uses default values of M = 10000 and  = 99%. While these defaults
can be easily changed, they provide quick and accurate estimates of exact p values for a
wide range of data sets.
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The asymptotic p value is obtained by noting that the large-sample distribution of T is
chi-square with  degrees of freedom. Thus, the asymptotic two-sided p value is

Equation 7.14

One-sided p values are inappropriate for the tests in this chapter, since they all assume
that there is no a priori natural ordering of the K treatments under the alternative
hypothesis. Thus, large observed values of T are indicative of a departure from  but
not of the direction of the departure.

Friedman’s Test
The methods discussed in this and succeeding sections of this chapter apply to both the
randomization and population models for generating the data. If you assume that the
assignment of the treatments to the K subjects within each block is random (the
randomized block design), you need make no further assumptions concerning any
particular population model for generating the ’s. This is the approach taken by
Lehmann (1975). However, sometimes it is useful to specify a population model, since
it allows you to define the null and alternative hypotheses precisely. Accordingly,
following Hollander and Wolfe (1973), you can take the model generating the original
two-way layout (see Table 7.2) to be

Equation 7.15

for , and , where  is the overall mean,  is the block
effect,  is the treatment effect, and the ’s are identically distributed unobservable
error terms from an unknown distribution, with a mean of 0. All of these parameters are
unknown, but for identifiability you can assume that 

Note that  is a random variable, whereas  is the specific value assumed by it in
the data set under consideration. The null hypothesis that there is no treatment effect
may be formally stated as

Equation 7.16
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Friedman’s test has good power against the alternative hypothesis

Equation 7.17

Notice that this alternative hypothesis is an omnibus one. It does not specify any ordering
of the treatments in terms of increases in response levels. The alternative to the null
hypothesis is simply that the treatments are different, not that one specific treatment is
more effective than another. 

Friedman’s test uses the following test statistic, defined on the two-way layout of
mid-ranks shown in Table 7.3.

Equation 7.18

The exact, Monte Carlo and asymptotic two-sided p values based on this statistic are ob-
tained by Equation 7.7, Equation 7.9, and Equation 7.14, respectively.

Example: Effect of Hypnosis on Skin Potential

This example is based on an actual study (Lehmann, 1975). However, the original data
have been altered to illustrate the importance of exact inference for data characterized
by a small number of blocks but a large block size. In this study, hypnosis was used to
elicit (in a random order) the emotions of fear, happiness, depression, calmness, and
agitation from each of three subjects. Figure 7.1 shows these data displayed in the Data
Editor. Subject identifies the subject, and fear, happy, depress, calmness, and agitate
give the subjects’s skin measurements (adjusted for initial level) in millivolts for each
of the emotions studied.
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Figure 7.1 Effect of hypnosis on skin potential
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Do the five types of hypnotic treatments result in different skin measurements? The data
seem to suggest that this is the case, but there were only three subjects in the sample.
Friedman’s test can be used to test this hypothesis accurately. The results are displayed
in Figure 7.2.

The exact two-sided p value is 0.027 and suggests that the five types of hypnosis are sig-
nificantly different in their effects on skin potential. The asymptotic two-sided p value,
0.057, is double the exact two-sided p value and does not show statistical significance at
the 5% level.

Because this data set is small, the exact computations can be executed quickly. For a
larger data set, the Monte Carlo estimate of the exact p value is useful. Figure 7.3 dis-
plays the results of a Monte Carlo analysis on the same data set, based on generating
10,000 permutations of the original two-way layout. 
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Figure 7.2 Friedman’s test results for hypnosis data
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Notice that the Monte Carlo point estimate of 0.027 is much closer to the true p value
than the asymptotic p value. In addition, the Monte Carlo technique guarantees with
99% confidence that the true p value is contained within the range (0.023, 0.032). This
confirms the results of the exact inference, that the differences in the five modes of hyp-
nosis are statistically significant. The asymptotic analysis failed to demonstrate this result.

Kendall’s W
Kendall’s W, or coefficient of concordance, was actually developed as a measure of
association, with the N blocks representing N independent judges, each one assigning
ranks to the same set of K applicants (Kendall and Babington-Smith, 1939). Kendall’s
W measures the extent to which the N judges agree on their rankings of the K applicants. 

Figure 7.3  Monte Carlo results for hypnosis data 
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Kendall’s W bears a close relationship to Friedman’s test; Kendall’s W is in fact a
scaled version of Friedman’s test statistic:

Equation 7.19

The exact permutation distribution of W is identical to that of , and tests based on ei-
ther W or  produce identical p values. The scaling ensures that  if there is per-
fect agreement among the N judges in terms of how they rank the K applicants. On the
other hand, if there is perfect disagreement among the N judges, . The fact that
the judges don’t agree implies that they don’t rank the K applicants in the same order.
So each applicant will fare well at the hands of some judges and poorly at the hands of
others. Under perfect disagreement, each applicant will fare the same overall and will
thereby produce an identical value for . This common value of  will be , and
as a consequence, .

Example: Attendance at an Annual Meeting

This example is taken from Siegel and Castellan (1988). The Society for Cross-Cultural
Research (SCCR), decided to conduct a survey of its membership on factors influencing
attendance at its annual meeting. A sample of the membership was asked to rank eight
factors that might influence attendance. The factors, or variables, were airfare, climate,
season, people, program, publicity, present, and interest. Figure 7.4 displays the data
in the Data Editor and shows how three members (raters 4, 21, and 11) ranked the eight
variables.

To test the null hypothesis that Kendall’s coefficient of concordance is 0, out of the eight
possible ranks, each rater (judge) assigns a random rank to each factor (applicant). The
results are shown in Figure 7.5.

W
TF

N K 1–( )
----------------------=

TF
TF W 1=

W 0=

R.j R.j R..
W 0=

Figure 7.4 Rating of factors affecting decision to attend meeting
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The point estimate of the coefficient of concordance is 0.656. The asymptotic p value of
0.055 suggests that you cannot reject the null hypothesis that the coefficient is 0. How-
ever, because of the small sample size (only 3 raters), this conclusion should be verified
with an exact test, or you can rely on a Monte Carlo estimate of the exact p value, based
on 10,000 random permutations of the original two-way layout of mid-ranks. The Monte
Carlo estimate is 0.022, less than half of the asymptotic p value, and is strongly sugges-
tive that the coefficient of concordance is not 0. The 99% confidence interval for the ex-
act p value is (0.022, 0.026). It confirms that you can reject the null hypothesis that there
is no association at the 5% significance level, since you are 99% assured that the exact
p value is no larger than 0.026. 

Equation 7.19 implies that Friedman’s test and Kendall’s W test will yield identical
p values. This can be verified by running Friedman’s test on the data shown in Figure
7.4. Figure 7.6 shows the asymptotic and Monte Carlo p values for Friedman’s test and
demonstrates that they are the same as those obtained with Kendall’s W test. The Monte
Carlo equivalence was achieved by using the same starting seed and the same number

Figure 7.5 Results of Kendall’s W for data on factors affecting decision to attend meeting
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of Monte Carlo samples for both tests. If a different starting seed had been used, the two
Monte Carlo estimates of the exact p value would have been slightly different.

Example: Relationship of Kendall’s W to Spearman’s R

In Chapter 14, a different measure of association known as Spearman’s rank-order
correlation coefficient is discussed. That measure is applicable only if there are 
judges, each ranking K applicants. Could this measure be extended if N exceeded 2? One
approach might be to form  distinct pairs of judges. Then each pair
would yield a value for Spearman’s rank-order correlation coefficient. Let 
denote the average of all these Spearman correlation coefficients. If there are no ties in
the data you can show (Conover, 1980) that

Equation 7.20

Thus, the average Spearman rank-order correlation coefficient is linearly related to
Kendall’s coefficient of concordance, and you have a natural way of extending the
concept correlation from a measure of association between two judges to one between
several judges. 

This can be illustrated with the data in Figure 7.4. As already observed, Kendall’s W
for these data is 0.656. Using the procedure discussed in “Spearman’s Rank-Order
Correlation Coefficient” on p. 174 in Chapter 14, you can compute Spearman’s correla-
tion coefficient for all possible pairs of raters. The Spearman correlation coefficient
between rater 4 and rater 21 is 0.7381. Between rater 4 and rater 11, it is 0.2857. Finally,
between rater 21 and rater 11, it is 0.4286. Therefore, the average of the three Spearman
correlation coefficients is . Substituting

 and  into Equation 7.20, you also get 0.4841.

Figure 7.6 Friedman’s test results for data on factors affecting decision to attend meeting
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Cochran’s Q Test
Suppose that the  values in the two-way layout shown in Table 7.2 were all binary,
with a 1 denoting success and a 0 denoting failure. A popular mathematical model for
generating such binary data in the context of the two-way layout is the logistic regres-
sion model

Equation 7.21

where, for all , and , ,  is the back-
ground log-odds of response,  is the block effect, and  is the treatment effect. All of
these parameters are unknown, but for identifiability you can assume that 

Friedman’s test applied to such data is known as Cochran’s Q test. As before, the null
hypothesis that there is no treatment effect can be formally stated as

Equation 7.22

Cochran’s Q test is used to test  against unordered alternatives of the form

Equation 7.23

Like Friedman’s test, Cochran’s Q is an omnibus test. The alternative hypothesis is sim-
ply that the treatments are different, not that one specific treatment is more effective than
another. You can use the same test statistic as for Friedman’s test. Because of the binary
observations, the test statistic reduces to

Equation 7.24

where  is the total number of successes in the jth treatment,  is the total number of
successes in the ith block, and  denotes the average . The
asymptotic distribution of Q is chi-square with  degrees of freedom. The exact
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and Monte Carlo results are calculated using the same permutational arguments used for
Friedman’s test. The exact, Monte Carlo and asymptotic two-sided p values are thus
obtained by Equation 7.7, Equation 7.9, and Equation 7.14, respectively. 

Example: Crossover Clinical Trial of Analgesic Efficacy

This data set is taken from a three-treatment, three-period crossover clinical trial pub-
lished by Snapinn and Small (1986). Twelve subjects each received, in random order,
three treatments for pain relief: a placebo, an aspirin, and an experimental drug. The out-
come of treatment j on subject i is denoted as either a success  or a failure

. Figure 7.7 shows the data displayed in the Data Editor.
uij 1=( )

uij 0=( )

Figure 7.7 Crossover clinical trial of analgesic efficacy
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The Cochran’s Q test can be used to determine if the response rates for the three treat-
ments differ. The results are displayed in Figure 7.8.

The exact p value is 0.026 and indicates that the three treatments are indeed significantly
different at the 5% level. The asymptotic p value, 0.020, confirms this result. In this data
set, there was very little difference between the exact and the asymptotic inference.
However, the data set is fairly small, and a slightly different data configuration could have
resulted in an important difference between the exact and asymptotic p values. To illus-
trate this point, ignore the data provided by the 12th subject. Running Cochran’s Q test
once more, this time on only the first 11 subjects, yields the results shown in Figure 7.9.

Figure 7.8 Cochran’s Q results for study of analgesic efficacy
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Figure 7.9 Cochran’s Q results for reduced analgesic efficacy data
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This time, the exact p value, 0.059, is not significant at the 5% level, but the asymp-
totic approximation, 0.045, is. Although not strictly necessary for this small data set,
you can also run the Monte Carlo test on the first 11 subjects. The results are shown
in Figure 7.10. 

The Monte Carlo estimate of the exact p value was obtained by taking 10,000 random
permutations of the observed two-way layout. As Figure 7.10 shows, the results
matched those obtained from the exact test. The Monte Carlo sampling demonstrated
that the exact p value lies in the interval (0.050, 0.061) with 99% confidence. This is
compatible with the exact results, which also showed that the exact p value exceeds
0.05. The asymptotic result, on the other hand, erroneously claimed that the p value is
less than 0.05 and is therefore statistically significant at the 5% level.

Figure 7.10 Monte Carlo results for reduced analgesic efficacy data
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K-Sample Inference: 
Independent Samples

This chapter deals with tests based on K independent samples of data drawn from K
distinct populations. The objective is to test the null hypothesis that the K populations
all have the same response distributions against the alternative that the response
distributions are different. The data could also arise from randomized clinical trials in
which each subject is assigned, according to a prespecified randomization rule, to one
of K treatments. Here it is not necessary to make any assumptions about the underlying
populations from which these subjects were drawn, and the goal is simply to test that
the K treatments are the same in terms of the responses they produce. Lehmann (1975)
has demonstrated clearly that the same statistical methods are applicable whether the
data arose from a population model or a randomization model. Thus, no distinction will
be made between the two ways of gathering the data.

This chapter generalizes the tests for two independent samples, discussed in Chapter 6,
to tests for K independent samples. There are two important distinctions between the
structure of the data in this chapter and in Chapter 7 (the chapter on K related samples). In
this chapter, the data are independent both within a sample and across samples; in Chapter
7, the data are correlated across the K samples. Also, in this chapter, the sample sizes can
differ across the K samples, with  being the size of the jth sample; in Chapter 7, the
sample size, N, is required to be the same for each of the K samples.

Available Tests
Table 8.1 shows the available tests for several independent samples, the procedure from
which they can be obtained, and a bibliographical reference for each test.

nj

8
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Table 8.1 Available tests

The Kruskal-Wallis and the Jonckheere-Terpstra tests are also discussed in the chapters
on crosstabulated data. The Kruskal-Wallis test also appears in Chapter 11, which
discusses singly-ordered  contingency tables. The Jonckheere-Terpstra test also
appears in Chapter 12, which deals with doubly-ordered  contingency tables.
These tests are applicable both to data arising from nonparametric continuous
univariate-response models (discussed in this chapter) and to data arising from
categorical-response models such as the multinomial, Poisson, or hypergeometric
models (discussed in later chapters). The tests in the two settings are completely
equivalent, although the formulas for the test statistics might differ slightly to reflect the
different mathematical models giving rise to the data.

When to Use Each Test

The tests discussed in this chapter are of two broad types: those appropriate for use
against unordered alternatives and those for use against ordered alternatives. Following
a discussion of these two types of tests, each individual test will be presented, along with
the null and alternative hypotheses.

Tests Against Unordered Alternatives

Use the median test or the Kruskal-Wallis test if the alternatives to the null hypothesis
of equality of the K populations are unordered. The term unordered alternatives means
that there can be no a priori ordering of the K populations from which the samples were
drawn, under the alternative hypothesis. As an example, the K populations might
represent K distinct cities in the United States. Independent samples of individuals are
taken from each city and some measurable characteristic, say annual income, is selected
as the response. There is no a priori reason why the cities should be arranged in
increasing order of the income distributions of their residents, under the alternative
hypothesis. All you can reasonably say is that the income distributions are unequal.

For tests against unordered alternatives, the only conclusion you can draw when the
null hypothesis is rejected is that the K populations do not all have the same probability
distribution. Therefore, a one-sided p value cannot be defined for testing a specific

Tests Commands References

Median test Nonparametric Tests: Tests for Several 
Independent Samples

Gibbons (1985

Kruskal-Wallis Test Nonparametric Tests: Tests for Several 
Independent Samples

Siegel & Castellan (1988)

Jonckheere-Terpstra Test Nonparametric Tests: Tests for Several 
Independent Samples

Hollander & Wolfe (1973)

r c×
r c×
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direction in which the K populations might be ordered under the alternative hypothesis.
Such tests are said to be inherently two-sided.

Median test. The median test is useful when you have no idea whatsoever about the al-
ternative hypothesis. It is an omnibus test for the equality of K distributions, where the
alternative hypothesis is simply that the distributions are unequal, without any further
specification as to whether they differ in shape, in location, or both. It uses only infor-
mation about the magnitude of each of the observations relative to a single number, the
median for the entire data set. Therefore, it is not as powerful as the other tests consid-
ered here, most of which use more of the available information by considering the rela-
tive magnitude of each observation when compared with every other observation. On
the other hand, it is the most general of the available tests, making no assumptions about
the alternative hypothesis.

Kruskal-Wallis test. This is one of the most popular nonparametric tests for comparing K
independent samples. It is the nonparametric analog of one-way ANOVA. In p value
calculations, mid-ranks are substituted for the raw data and exact permutational
distributions are substituted for F distributions derived from normality assumptions. It
has good power against location-shift alternatives, where the distributions from which
the samples were drawn have the same general shape but their means are shifted with
respect to each other. It is about 98% as efficient as one-way ANOVA for comparing K
samples when the underlying populations are normal and have a common variance.

Tests Against Ordered Alternatives

Use the Jonckheere-Terpstra test if the alternatives to the null hypothesis of equality of the
K populations are ordered. The term ordered alternatives means that there is a natural a
priori ordering of the K populations from which the samples were drawn, under the
alternative hypothesis. For example, the K populations might represent K progressively
increasing doses of some drug. Here the null hypothesis is that the different dose levels all
produce the same response distributions; the alternative hypothesis is that there is a dose-
response relationship in which increases in drug dose lead to increases in the magnitude of
the response. In this setting, there is indeed an a priori natural ordering of the K populations
in terms of increased dose levels of the drug. One of the implications of natural ordering
under the alternative hypothesis is that the ordering could be either ascending or
descending. For the dose-response example, you could define a one-sided p value for
testing the null hypothesis against the alternative that an increase in drug dose increases
the probability of response. But you could also define a one-sided p value against the
alternative that it leads to a decrease in the probability of response. A two-sided p value
could be defined to test the null hypothesis against either alternative. Thus, for tests against
ordered alternatives, both one- and two-sided p values are relevant.
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Statistical Methods
The data for all the tests in this chapter consist of K independent samples each of size

, where . These N observations can be represented
in the form of the one-way layout shown in Table 8.2.

This table, denoted by u, shows the observed one-way layout of raw data. The observa-
tions in this one-way layout are independent both within and across columns. The data
arise from continuous univariate distributions (possibly with ties). Let

Equation 8.1

denote the distribution from which the  observations displayed in column j of the one-
way layout were drawn. The goal is to test the null hypothesis

Equation 8.2

In order to test  by nonparametric methods, it is necessary to replace the original
observations in the above one-way layout with corresponding scores. These scores
represent various ways of ranking the data in the pooled sample of size N. Different tests
utilize different scores, as you will see in the individual sections on each test. Let  be
the score corresponding to . Then the one-way layout, with the original data replaced
by scores, is shown in Table 8.3.

Table 8.2 One-way layout for K independent samples
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This table, denoted by w, shows the observed one-way layout of scores. Inference about
 is based on comparing this observed one-way layout to others like it, in which the

individual  elements are the same but occupy different rows and columns. To devel-
op this idea more precisely, let the set W denote the collection of all possible K-column
one-way layouts, with  elements in column j, the members of which include w and all
its permutations. The random variable  is a permutation of w if it contains precisely
the same scores as w but with the scores rearranged so that, for at least one 
pair, the scores  and  are interchanged. Formally, let

Equation 8.3

In Equation 8.3, you could think of  as a random variable, and w as a specific value
assumed by it. 

To clarify these concepts, consider a simple numerical example in which the original
data come from three independent samples of size 5, 3, and 3, respectively. These data
are displayed in a one-way layout, u, shown in Table 8.4.

Table 8.3 One-way layout with scores replacing original data
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Table 8.4 Example of a one-way layout of original data

Samples

1 2 3

27 38 75
30 9 76
55 27 90
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As discussed in “Kruskal-Wallis Test” on p. 127, to run the Kruskal-Wallis test on these
data, you must replace them with their ranks. The one-way layout of observed scores,
with the original data replaced by their ranks, is shown in Table 8.5. 

This one-way layout of ranks is denoted by w. It is the one actually observed. Notice that
two observation were tied at 27 in u. Had they been separated by a small amount, they
would have ranked 3 and 4. But since they are tied, use the mid-rank, ,
as the rank for each of them in w. The symbol W represents the set of all possible one-
way layouts in which entries are the 11 numbers in w, with 5 numbers in column 1, 3
numbers in column 2, and 3 numbers in column 3. Thus, w is one member of W. (It is
the one actually observed.) Another member is , where  is a different permutation
of the numbers in w, as shown in Table 8.6.

All of the test statistics in this chapter are univariate functions of . Let the test
statistic be denoted  by , and its observed value be denoted by . The
functional form of  will be defined separately for each test in subsequent sections
of this chapter. Following is a discussion of the null distribution of T—how it can be
derived in general, and how it is used for p value computations.

Table 8.5 One-way layout with ranks replacing original data

Samples

1 2 3

3.5 6 9
5 1 10
7 3.5 11
8
2

Table 8.6 Permutation of the observed one-way layout of scores

Sample

1 2 3

6 5 9
1 8 10

3.5 7 11
3.5
2
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Distribution of T

In order to test the null hypothesis, , you need to derive the distribution of T under
the assumption that  is true. This distribution is obtained by the following permuta-
tional argument:

If  is true, every member  has the same probability of being observed.

Lehmann (1975) has shown that the above permutational argument is valid whether the
data were gathered independently from K populations or were obtained by assigning N
subjects to K treatments in accordance with a predetermined randomization rule. There-
fore, no distinction will be made between these two ways of gathering the data. 

It follows from the above permutational argument that the exact probability of ob-
serving any  is

Equation 8.4

which does not depend on the specific way in which the original one-way layout, w, was
permuted. Then

Equation 8.5

the sum being taken over all . Similarly, the right tail of the distribution of T is
obtained as

Equation 8.6

The probability distribution of T and its tail areas are obtained in SPSS Exact Tests by
numerical algorithms. In large samples, you can obtain an asymptotic approximation for
Equation 8.6. Different approximations apply to the various tests described in this
chapter and are discussed in the sections specific to each test.

P Value Calculations

The p value is the probability, under , of obtaining a value of the test statistic at least as
extreme as the one actually observed. The exact, Monte Carlo, and asymptotic p values
can be computed for tests on K independent samples as follows.
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Exact P Values

For all tests against unordered alternatives, the more extreme values of T are those that
are larger than the observed t. The exact two-sided p value is then defined as

Equation 8.7

Since there is no a priori natural ordering of the K treatments under the alternative
hypothesis, large observed values of T are indicative of a departure from  but not of
the direction of the departure. Therefore, it is not possible to define a one-sided p value
for tests against unordered alternatives. 

For tests against ordered alternatives, such as the Jonckheere-Terpstra test, the test
statistic T is considered extreme if it is either very large or very small. Large values of
T indicate a departure from the null hypothesis in one direction, while small values of T
indicate a departure from the null hypothesis in the opposite direction. Whenever the test
statistic possesses a directional property of this type, it is possible to define both one-
and two-sided p values. The exact one-sided p value is defined as

Equation 8.8

and the exact two-sided p value is defined as

Equation 8.9

where  is the expected value of T.

Monte Carlo P Values

When exact p values are too difficult to compute, you can estimate them by Monte Carlo
sampling. Below, Monte Carlo sampling is used to estimate the exact p value given by
Equation 8.7. The same procedure can be readily adapted to Equation 8.8 and Equation 8.9.

1. Generate a new one-way layout of scores by permuting the original layout, w, in one
of the  equally likely ways.

2. Compute the value of the test statistic T for the permuted one-way layout. 

3. Define the random variable

 Equation 8.10
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Repeat the above steps a total of M times to generate the realizations  for
the random variable Z. Then an unbiased estimate of  is 

Equation 8.11

Next, let 

Equation 8.12

be the sample standard deviation of the . Then a 99% confidence interval for the ex-
act p value is:

 Equation 8.13

A technical difficulty arises when either  or . Now the sample standard
deviation is 0, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be shown that if , an  confidence interval for the exact p value is

Equation 8.14

Similarly when , an  confidence interval for the exact p value is

Equation 8.15

SPSS Exact Tests uses default values of  and . While these
defaults can be easily changed, we have found that they provide quick and accurate
estimates of exact p values for a wide range of data sets.

Asymptotic P Values

For tests against unordered alternatives the asymptotic two-sided p value is obtained by
noting that the large-sample distribution of T is chi-square with  degrees of
freedom. The asymptotic p value is thus

Equation 8.16
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As noted earlier, one–sided p values are not defined for tests against unordered alternatives.
For tests against ordered alternatives, in particular for the Jonckheere-Terpstra test,

the asymptotic distribution of T is normal. The one- and two-sided p values are now
defined by computing the normal approximations to Equation 8.8 and Equation 8.9,
respectively. Thus, the asymptotic one-sided exact p value is defined as

Equation 8.17

and the asymptotic two-sided p value is defined as

Equation 8.18

where  is the tail area to the left of z from a standard normal distribution, and 
is the standard deviation of T. Explicit expressions for  and  are provided in
“Jonckheere-Terpstra Test” on p. 131.

Median Test
The median test is a nonparametric procedure for testing the null hypothesis , given
by Equation 8.2, against the general alternative

Equation 8.19

The median test is an omnibus test designed for a very general alternative hypothesis. It
requires no assumptions about the K distributions, , being tested. How-
ever if you have additional information about these distributions—for example, if you
believe that they have the same shape but differ from one another by shift parameters
under the alternative hypothesis—there are more powerful tests available.

To define the test statistic for the median test, the first step is to transform the original
one-way layout of data, as shown in Table 8.2, into a one-way layout of scores, as shown
in Table 8.3. To compute these scores, first obtain the grand median, , for the pooled
sample of size N. The median is calculated in the following way. Let 
be the pooled sample of  values, sorted in ascending order. Then

Equation 8.20
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The score, , corresponding to each , is defined as

Equation 8.21

Define

Equation 8.22

as the total number of observations in the jth sample that are at or below the median and 

Equation 8.23

as the total number of observations in the pooled sample that are at or below the median.
The test statistic for the median test is defined on the  contingency table

displayed in Table 8.7. The entries in the first row are the counts of the number of
subjects in each sample whose responses fall at or below the median, while the entries
in the second row are the counts of the number of subjects whose responses fall above
the median.

The probability of observing this contingency table under the null hypothesis,
conditional on fixing the margins, is given by the hypergeometric function

Equation 8.24

Table 8.7 Data grouped into a 2 x K contingency table for the median test
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For any , the test statistic for the median test is the usual Pearson chi-square statistic

Equation 8.25

Thus, if t is the value of T actually observed, the exact two–sided p value for the median
test is given by

Equation 8.26

the sum being taken over all  for which . An asymptotic approximation
to  is obtained by noting that T converges to the chi-square distribution with 
degrees of freedom. Therefore,

Equation 8.27

The Monte Carlo two-sided p value is obtained as described in “P Value Calculations”
on p. 119. Alternatively, you can generate a sequence of M  contingency tables,

, each with the same margins as Table 8.7, such that table  is generated
with probability , given by Equation 8.24. For each table generated in this way,
you can compute the test statistic, , and define a quantity  if ; 0 other-
wise. The Monte Carlo estimate of  is

Equation 8.28

The 99% Monte Carlo confidence interval for the true p value is calculated by
Equation 8.13.
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Example: Hematologic Toxicity Data

The data on hematologic toxicity are shown in Figure 8.1. The data consist of two
variables: drug is the chemotherapy regimen for each patient and days represents the
number of days the patient’s white blood count (WBC) was less than 500. The data
consist of 28 cases.

The exact results of the median test for these data are shown in Figure 8.2, and the results
of the Monte Carlo estimate of the exact test, using 10,000 Monte Carlo samples, are
shown in Figure 8.3.

Figure 8.1 Data on hematologic toxicity
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The median for the pooled sample is 7.0. This results in the value 4.317 for the test
statistic, based on Equation 8.25. The exact p value is 0.429 and does not provide any
evidence that the five drugs produce different distributions for the WBC. The asymptotic
p value, 0.365, supports this conclusion, but in this small data set, it is not a good
approximation of the exact p value. On the other hand, the Monte Carlo estimate of the
exact p value, 0.432, comes much closer to the exact p value. The 99% Monte Carlo

Figure 8.2 Median test results for hematologic toxicity data
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Figure 8.3 Monte Carlo median test results for hematologic toxicity data

28 7.00 4.317
2

4 .365 .432
3

.419 .444
Days with
WBC <
500

N Median Chi-Square df
Asymp.

Sig. Sig.
Lower
Bound

Upper
Bound

99% Confidence
Interval

Monte Carlo Sig.

Test Statistics1

Grouping Variable: Drug Regimen1. 

9 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 1.7.2. 

Based on 10000 sampled tables with starting seed 2000000.3. 

1. Grouping Variable: Drug Regimen
2. 9 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 1.7.
3. Based on 10000 sampled tables with starting seed 2000000.

Test Statistics1



K-Sample Inference: Independent Samples 127

confidence interval for the exact p value, (0.419, 0.444) also supports the conclusion that
there is no significant difference in the distribution of WBC across the five drugs.

The following discussion shows the relationship between the median test and the
Pearson chi-square test. The median of these data is 7.0. The data can be divided into
two groups, with one group containing those cases with  and the other group
containing those cases with . The crosstabulation of these two groups, divided
by the median, with the five drug regimens, is shown in Figure 8.4.

The results of the Pearson chi-square test are shown in Figure 8.5. Notice that the results
are the same as those obtained by running the median test on the original one-way layout
of data.

Kruskal-Wallis Test
The Kruskal-Wallis test (Siegel and Castellan, 1988) is a very popular nonparametric
test for comparing K independent samples. When , it specializes to the Mann-
Whitney test. The Kruskal-Wallis test has good power against shift alternatives.
Specifically, you assume, as in Hollander and Wolfe (1973), that the one-way layout, u,
shown in Table 8.2, was generated by the model

Equation 8.29

for all  and . In this model,  is the overall mean,  is the
treatment effect, and the ’s are identically distributed unobservable error terms from

WBC 7≤
WBC 7>

Figure 8.4 Hematologic toxicity data grouped into a 2 x K contingency table for the median test
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an unknown distribution with a mean of 0. All parameters are unknown, but for identi-
fiability, you can assume that

Equation 8.30

The null hypothesis of no treatment effect can be formally stated as

Equation 8.31

The Kruskal-Wallis test has good power against the alternative hypothesis

Equation 8.32

Notice that this alternative hypothesis does not specify any ordering of the treatments in
terms of increases in response levels. The alternative to the null hypothesis is simply that
the treatments are different, not that one specific treatment elicits greater response than
another. If there were a natural ordering of treatments under the alternative hypothesis—
if, that is, you could state a priori that the ’s are ordered under the alternative hypoth-
esis—a more powerful test would be the Jonckheere-Terpstra test (Hollander and Wolfe,
1973), discussed on p. 131. 

To define the Kruskal-Wallis test statistic, the first step is to convert the one-way layout,
u, of raw data, as shown in Table 8.2, into a corresponding one-way layout of scores, w, as
shown in Table 8.3. The scores, , for the Kruskal-Wallis test are the ranks of the obser-
vations in the pooled sample of size N. If there were no ties, the set of  values in Table
8.3 would simply be some permutation of the first N integers. However, to allow for the
possibility that some observations might be tied, you can assign the mid-rank of a set of tied
observations to each of them. The easiest way to explain how the mid-ranks are computed
is by considering a numerical example. Suppose that  are all tied at the same
numerical value, say 55. Assume that these four observations would occupy positions 15,
16, 17, and 18, if all the N observations were pooled and then sorted in ascending order. In
this case, you would assign the mid-rank  to these four tied
observations. Thus, . 

More generally, let  denote the pooled sample of all of the N
observations sorted in ascending order. To allow for the possibility of ties, let there be
g distinct observations among the sorted ’s, with  distinct observations being equal
to the smallest value,  distinct observations being equal to the second smallest value,

 distinct observations being equal to the third smallest value, and so on, until, finally,
 distinct observations are equal to the largest value. It is now possible to define the

mid-ranks precisely. For , the distinct mid-rank assumed by all of the 
observations tied in the lth smallest position is
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In this way, the original one-way layout of raw data is converted into a corresponding
one-way layout of mid-ranks. 

Next, for any treatment j, where , define the rank-sum as

Equation 8.33

The Kruskal-Wallis test statistic, , for any , can now be defined as

Equation 8.34

where  is a tie correction factor given by

Equation 8.35

The Kruskal-Wallis test is also defined in Chapter 11, using the notation developed for
analyzing  contingency tables. The two definitions are equivalent. Since the test is
applicable to both continuous and categorical data, the test statistic is defined twice,
once in the context of a one-way layout and once in the context of a contingency table. 

Let t denote the value of T actually observed from the data. The exact, Monte Carlo,
and asymptotic p values based on the Kruskal-Wallis statistic can be obtained as
discussed in “P Value Calculations” on p. 119. The exact two-sided p value is computed
as shown in Equation 8.7. The Monte Carlo two-sided p value is computed as in
Equation 8.11, and the asymptotic two-sided p value is computed as shown in Equation
8.16. One-sided p values are not defined for tests against unordered alternatives like the
Kruskal-Wallis test.

Example: Hematologic Toxicity Data, Revisited 

The Kruskal-Wallis test can be used to reconsider the hematologic toxicity data
displayed in Figure 8.1. You can once again compare the five drugs to determine if they
have significantly different response distributions. This time, however, the test statistic
actually takes advantage of the relative rankings of the different observations instead of
simply using the information that an observation is either above or below the pooled
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median. Thus, you can expect the Kruskal-Wallis test to be more powerful than the
median test. Although it is too difficult to obtain the exact p value for this data set, you
can obtain an extremely accurate Monte Carlo estimate of the exact p value based on a
Monte Carlo sample of size 10,000. The results are shown in Figure 8.6.

As expected, the greater power of the Kruskal-Wallis test leads to a smaller p value than
obtained with the median test. There is, however, a difference between the asymptotic
inference and the exact inference computed by the Monte Carlo estimate. The Monte
Carlo estimate of the exact p value is 0.038 and shows that the exact p value is
guaranteed to lie in the range  with 99% confidence. Thus, the null
hypothesis can be rejected at the 5% significance level. The asymptotic inference, in
contrast, was unable to estimate the true p value with this degree of accuracy. It
generated a p value of 0.052, which is not significant at the 5% level. 

Figure 8.6 Monte Carlo results of Kruskal-Wallis test for hematologic toxicity data
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Jonckheere-Terpstra Test
The Jonckheere-Terpstra test (Hollander and Wolfe, 1973) is more powerful than the
Kruskal-Wallis test for comparing K samples against ordered alternatives. Once again,
assume that the one-way layout shown in Table 8.2 was generated by the model Equation
8.29. The null hypothesis of no treatment effect is again given by Equation 8.31. This
time, however, suppose that the alternative hypothesis is ordered. Specifically, the one-
sided alternative might be of the form

Equation 8.36

implying that as you increase the index j, identifying the treatment, the distribution of
responses shifts to the right. Or else, the one-sided alternative might be of the form

Equation 8.37

implying that as you increase the index j, identifying the treatment, the distribution shifts
to the left. The two-sided alternative would state that either  or  is true, without
specifying which.

To define the Jonchkeere-Terpstra statistic, the first step, as usual, is to replace the
original observations with scores. Here, however, let the score, , be exactly the same
as the actual observation, . Then  and W, as defined by Equation 8.3, is the set
of all possible permutations of the one-way layout of actually observed raw data. Now,
for any , you compute  Mann-Whitney counts (see, for example,
Lehmann, 1976,), ,  as follows. For any ,

 is the count of the number of pairs, , which are such that  plus
half the number of pairs, which are such that . The Jonckheere-Terpstra test
statistic, , is defined as follows:

Equation 8.38

The mean of the Jonckheere-Terpstra statistic is

Equation 8.39

The formula for the variance is more complicated. Suppose, as in “Kruskal-Wallis Test”
on p. 127, that there are g distinct ’s among all N observations pooled together, with

 distinct observations being equal to the smallest value,  distinct observations
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being equal to the second smallest value,  distinct observations being equal to the
third smallest value, and so on, until, finally,  distinct observations are equal to the
largest value. The variance of the Jonckheere-Terpstra statistic is

Now, let  be the observed value of T. The exact, Monte Carlo, and asymptotic p
values based on the Jonckheere-Terpstra statistic can be obtained as discussed in “P
Value Calculations” on p. 119. The exact one- and two-sided p values are computed as in
Equation 8.8 and Equation 8.9, respectively. The Monte Carlo two-sided p value is
computed as in Equation 8.11, with an obvious modification to reflect the fact that you
want to estimate the probability inside the region  instead of the
region . The Monte Carlo one-sided p value can be similarly defined. The
asymptotic distribution of T is normal, with mean of  and variance . The
asymptotic one- and two-sided p values are obtained by Equation 8.17 and Equation
8.18, respectively. 

Example: Space-Shuttle O-Ring Incidents Data

Professor Richard Feynman, in his delightful book What Do You Care What Other
People Think? (1988), recounted at great length his experiences as a member of the
presidential commission formed to determine the cause of the explosion of the space
shuttle Challenger in 1986. He suspected that the low temperature at takeoff caused the
O-rings to fail. In his book, he has published the data on temperature versus the number
of O-ring incidents, for 24 previous space shuttle flights. These data are shown in Figure
8.7. There are two variables in the data—incident indicates the number of O-ring
incidents, and is either none, one, two, or three; temp indicates the temperature in
Fahrenheit.
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The null hypothesis is that the temperatures in the four samples (0, 1, 2, or 3 O-ring
incidents) have come from the same underlying population distribution. The one-sided
alternative hypothesis is that populations with a higher number of O-ring incidents have
their temperature distributions shifted to the right of populations with a lower number
of O-ring incidents. The Jonckheere-Terpstra test is superior to the Kruskal-Wallis test
for this data set because the populations have a natural ordering under the alternative
hypothesis. The results of the Jonckheere-Terpstra test for these data are shown in
Figure 8.8.

Figure 8.7 Space-shuttle O-ring incidents and temperature at launch

Figure 8.8 Jonckheere-Terpstra test results for O-ring incidents data
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The Jonckheere-Terpstra test statistic is displayed in its standardized form

Equation 8.40

whose observed value is 

Equation 8.41

The output shows that , , and . Therefore, .
The exact one-sided p value is

Equation 8.42

The exact two-sided p value is

Equation 8.43

These definitions are completely equivalent to those given by Equation 8.8 and Equation
8.9, respectively. Asymptotic and Monte Carlo one- and two-sided p values can be sim-
ilarly defined in terms of the standardized test statistic. Note that  is asymptotically
normal with zero mean and unit variance.

The exact one-sided p value of 0.012 reveals that there is indeed a statistically signif-
icant correlation between temperature and number of O-ring incidents. The sign of the
standardized test statistic, , is negative, thus implying that higher launch
temperatures are associated with fewer O-ring incidents. The two-sided p value would
be used if you had no a priori reason to believe that the number of O-ring incidents is
negatively correlated with takeoff temperature. Here the exact two-sided p value, 0.024,
is also statistically significant.
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Introduction to Tests on R x C 
Contingency Tables

This chapter discusses hypothesis tests on data that are cross-classified into
contingency tables with r rows and c columns. The cross-classification is based on
categorical variables that may be either nominal or ordered. Nominal categorical
variables take on distinct values that cannot be positioned in any natural order. An
example of a nominal variable is color (for example, red, green, or blue). In some
statistical packages, nominal variables are also referred to as class variables, or
unordered variables. Ordered categorical variables take on distinct values that can be
ordered in a natural way. An example of an ordered categorical variable is drug dose
(for example, low, medium, or high). Ordered categorical variables can assume
numerical values as well (for example, the drug dose might be categorized into 100
mg/m2, 200 mg/m2, and 300 mg/m2). When the number of distinct numerical values
assumed by the ordered variable is very large (for example, the weights of individuals
in a population), it is more convenient to regard the variable as continuous (possibly
with ties) rather than categorical. There is considerable overlap between the statistical
methods used to analyze continuous data and those used to analyze ordered
categorical data. Indeed, many of the same statistical tests are applicable to both
situations. However, the probabilistic behavior of an ordered categorical variable is
captured by a different mathematical model than that of a continuous variable. For this
reason, continuous variables are discussed separately in Part 1.

This chapter summarizes the statistical theory underlying the exact, Monte Carlo,
and asymptotic p value computations for all the tests in Chapter 10, Chapter 11, and
Chapter 12. Chapter 10 discusses tests for  contingency tables in which the row
and column classifications are both nominal. These are referred to as unordered con-
tingency tables. Chapter 11 discusses tests for  contingency tables in which the
column classifications are based on ordered categorical variables. These are referred to
as singly ordered contingency tables. Chapter 12 discusses tests for  tables in
which both the row and column classifications are based on ordered categorical vari-
ables. These are referred to as doubly ordered contingency tables.

Table 9.1 shows an observed  contingency table in which  is the count of
the number of observations falling into row category i and column category j.

r c×

r c×

r c×

r c× xij

9
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The main objective is to test whether the observed  contingency table is consistent
with the null hypothesis of independence of row and column classifications. SPSS Exact
Tests computes both exact and asymptotic p values for many different tests of this
hypothesis against various alternative hypotheses. These tests are grouped in a logical
manner and are presented in the next three chapters, which discuss unordered, singly
ordered, and doubly ordered contingency tables, respectively. Despite these differences,
there is a unified underlying framework for performing the hypothesis tests in all three
situations. This unifying framework is discussed below in terms of p value computations.

The p value of the observed  contingency table is used to test the null hypothesis
of no row-by-column interaction. SPSS Exact Tests provides three categories of p values
for each test. The “gold standard” is the exact p value. When it can be computed, the
exact p value is recommended. Sometimes, however, a data set is too large for the exact
p value computations to be feasible. In this case, the Monte Carlo technique, which is
easier to compute, is recommended. The Monte Carlo p value is an extremely close
approximation to the exact p value and is accompanied by a fairly narrow confidence
interval within which the exact p value is guaranteed to lie (at the specified confidence
level). Moreover, by increasing the number of Monte Carlo samples, you can make the
width of this confidence interval arbitrarily small. Finally, the exact p value is always
recommended. For large, well-balanced data sets, the asymptotic p value is not too
different from its exact counterpart, but, obviously, you can’t know this for the specific
data set on hand without also having the exact or Monte Carlo p value available for
comparison. In this section, all three p values will be defined. First, you will see how the
exact p value is computed. Then, the Monte Carlo and asymptotic p values will be
discussed as convenient approximations to the exact p value computation.

To compute the exact p value of the observed  contingency table, it is necessary to: 

1. Define a reference set of  tables in which each table has a known probability
under the null hypothesis of no row-by-column interaction.

2. Order all the tables in the reference set according to a discrepancy measure (or test
statistic) that quantifies the extent to which each table deviates from the null hypothesis.

3. Sum the probabilities of all tables in the reference set that are at least as discrepant as
the observed table.

Table 9.1 Observed r x c contingency table

Rows Col_1 Col_2 Col_c Row_Total

Row_1
Row_2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Row_r
Col_Total N

…
x11 x12 … x1c m1
x21 x22 … x2c m2

…

xr1 xr2 … xrc mr
n1 n2 … nc

r c×

r c×

r c×

r c×
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Defining the Reference Set
Throughout this chapter, x will be used to denote the  contingency table actually
observed, and y will denote any generic  contingency table belonging to some well-
defined reference set of  contingency tables that could have been observed. The
exact probability of observing any generic table y depends on the sampling scheme used
to generate it. When both the row and column classifications are categorical, Agresti
(1990) lists three sampling schemes that could give rise to y—full multinomial sampling,
product multinomial sampling, and Poisson sampling. Under all three schemes, the
probability of observing y depends on unknown parameters relating to the individual cells
of the  table. The key to exact nonparametric inference is eliminating all nuisance
parameters from the distribution of y. This is accomplished by restricting the sample
space to the set of all  contingency tables that have the same marginal sums as the
observed table x. Specifically, define the reference set:

 Equation 9.1

Then, you can show that, under the null hypothesis of no row-by-column interaction, the
probability of observing any is

Equation 9.2

Equation 9.2, which is free of all unknown parameters, holds for categorical data wheth-
er the sampling scheme used to generate y is full multinomial, product multinomial, or
Poisson (Agresti, 1990).

The reference set Γ need not be the actual sample space of the data-generating
process. In product multinomial sampling, the row sums are fixed by the experimental
design, but the column sums can vary from sample to sample. In full multinomial and
Poisson sampling, both the row and column sums can vary. Conditioning on row and
column sums is simply a convenient way to eliminate nuisance parameters from the
expression for P(y), compute exact p values, and thus guarantee that you will be
protected from a conditional type 1 error at any desired significance level. Moreover,
since the unconditional type 1 error is a weighted sum of conditional type 1 errors, where
the weights are the probabilities of the different marginal configuration, the protection
from type 1 errors guaranteed by the conditional test carries over to the unconditional
setting. The idea of conditional inference to eliminate nuisance parameters was first
proposed by Fisher (1925). 

r c×
r c×

r c×

r c×

r c×

Γ y : y is r c; yij
j 1=

c

∑× mi; yij
i 1=

r

∑ nj for all i j,==

 
 
 
 
 

=

y Γ∈

P y( )
Πj 1=

c
nj!Πi 1=

r
mi!

N!Πj 1=
c Πi 1=

r
yij!

--------------------------------------------=



138 Chapter 9

Defining the Test Statistic
For statistical inference, each table  is ordered by a test statistic or discrepancy
measure that quantifies the extent to which the table deviates from the null hypothesis
of no row-by-column interaction. The test statistic will be denoted by D(y). Large abso-
lute values of D furnish evidence against the null hypothesis, while small absolute values
are consistent with it. The functional form of D(y) for each test is given in the chapter
specific to each test. Throughout this chapter, the function D(y) will be used to denote a
generic test statistic. Specific instances of test statistics will be denoted by their own
unique symbols. For example, for the Pearson chi-square test, the generic symbol D(y)
is replaced by CH(y), and the test statistic has the functional form of

Equation 9.3

Exact Two-Sided P Values
The exact two-sided p value is defined as the sum of null probabilities of all the tables
in Γ that are at least as extreme as the observed table x with respect to D. Specifically,

Equation 9.4

For later reference, define the critical region of the reference set:

Equation 9.5

Computing Equation 9.4 is sometimes rather difficult because the size of the reference
set Γ grows exponentially. For example, the reference set of all  tables with row
sums of (7, 7, 12, 4, 4) and column sums of (4, 5, 6, 5, 7, 7) contains 1.6 billion tables.
However, the tables in this reference set are all rather sparse and unlikely to yield accu-
rate p values based on large sample theory. SPSS Exact Tests uses network algorithms
based on the methods of Mehta and Patel (1983, 1986a, 1986b) to enumerate the tables
in Γ implicitly and thus quickly identify those in . This makes it feasible to compute
exact p values for many seemingly intractable data sets such as the one above. 

y Γ∈

CH y( )
yij mi– nj N⁄( )2
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Notwithstanding the availability of the network algorithms, a data set is sometimes
too large for the exact p value to be feasible to compute. But it might be too sparse for
the asymptotic p value to be reliable. For this situation, SPSS Exact Tests also provides
a Monte Carlo option, where only a small proportion of the  tables in Γ are
sampled, and an unbiased estimate of the exact p value is obtained.

Monte Carlo Two-Sided P Values
The Monte Carlo two-sided p value is a very close approximation to the exact two-sided
p value, but it is much easier to compute. The examples in Chapter 10, Chapter 11, and
Chapter 12 will show that, for all practical purposes, the Monte Carlo results can be used
in place of the exact results whenever the latter are too difficult to compute. The Monte
Carlo approach is a steady, reliable procedure that, unlike the exact approach, always takes
up a predictable amount of computing time. While it does not produce the exact p value,
it does produce a fairly tight confidence interval within which the exact p value is
contained, with a high degree of confidence (usually 99%).

 In the Monte Carlo method, a total of M tables is sampled from Γ, each table being
sampled in proportion to its hypergeometric probability (see Equation 9.2). (Sampling
tables in proportion to their probabilities is known as crude Monte Carlo sampling.) 

For each table  that is sampled, define the binary outcome  if ;
0 otherwise. The arithmetic average of all M of these ’s is taken as the Monte Carlo
point estimate of the exact two-sided p value: 

Equation 9.6

It is easy to show that  is an unbiased estimate of the exact two-sided p value. Next,

Equation 9.7

is the sample standard deviation of the ’s. Then a 99% confidence interval for the
exact p value is

Equation 9.8
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A technical difficulty arises when either  or . The sample standard de-
viation is now zero, but the data do not support a confidence interval of zero width. An
alternative way to compute a confidence interval that does not depend on  is based on
inverting an exact binomial hypothesis test when an extreme outcome is encountered. It
can be easily shown that if , an % confidence interval for the exact p value is

Equation 9.9

Similarly, when , an % confidence interval for the exact p value is

Equation 9.10

Asymptotic Two-Sided P Values
For all the tests in this chapter, the test statistic D(y) has an asymptotic chi-square dis-
tribution. The asymptotic two-sided p value is obtained as

Equation 9.11

where  is a random variable with a chi-square distribution and df are the appropriate
degrees of freedom. For tests on unordered  contingency tables, the degrees of free-
dom are ; for tests on singly ordered  contingency tables, the de-
grees of freedom are ; and tests on doubly ordered contingency tables have one
degree of freedom. Since the square root of a chi-square variate with one degree of free-
dom has a standard normal distribution, you can also work with normally distributed test
statistics for the doubly ordered  contingency tables.
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Unordered R x C Contingency Tables

The tests in this chapter are applicable to  contingency tables whose rows and
columns cannot be ordered in a natural way. In the absence of such an ordering, it is not
possible to specify any particular direction for the alternative to the null hypothesis that the
row and column classifications are independent. The tests considered here are appropriate
in this setting because they have good power against the omnibus alternative, or universal
hypothesis, that the row and column classifications are not independent. Subsequent chap-
ters deal with tests that have good power against more specific alternatives.

Available Tests
SPSS Exact Tests offers three tests for analyzing unordered  contingency tables.
They are the Pearson chi-square test, the likelihood-ratio test, and Fisher’s exact test.
Asymptotically, all three tests follow the chi-square distribution with 
degrees of freedom. Both exact and asymptotic p values are available from SPSS Exact
Tests. The asymptotic p value is provided by default, while the exact p value must be
specifically requested. If a data set is too large for the exact p value to be computed,
SPSS Exact Tests offers a special option whereby the exact p value is estimated up to
Monte Carlo accuracy. Table 10.1 shows the three available tests, the procedure from
which they can be obtained, and a bibliographical reference for each test.

When to Use Each Test

Any of the three tests, Pearson, likelihood-ratio, or Fisher’s, may be used when both
the row and column classifications of the  contingency table are unordered. All
three tests are asymptotically equivalent. The research in this area is scant and has

Table 10.1 Available tests

Test Procedure Reference

Pearson chi-square test Crosstabs Agresti (1990)
Likelihood-ratio test Crosstabs Agresti (1990)
Fisher’s exact test Crosstabs Freeman and 

Halton (1951)

r c×

r c×

r 1–( ) c 1–( )

r c×

10
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focused primarily on the question of which of the three asymptotic tests best matches its
exact counterpart. (See, for example, Roscoe and Byars, 1971; Chapman, 1976; Agresti
and Yang, 1987; Read and Cressie, 1988.) It is very likely that the Pearson chi-square
asymptotic test converges to its exact counterpart the fastest. You can use the SPSS
Exact Tests option to investigate this question and also to determine empirically which
of the three exact tests has the most power against specific alternative hypotheses. 

Statistical Methods
For the  contingency table shown in Table 9.1,  denotes the probability that an
observation will be classified as belonging to row i and column j. Define the marginal
probabilities:

The Pearson chi-square test, the likelihood-ratio test, and Fisher’s exact test are all ap-
propriate for testing the null hypothesis

Equation 10.1

against the general (omnibus) alternative that Equation 10.1 does not hold. An alternative
hypothesis of this form is of interest when there is no natural ordering of the rows and
columns of the contingency table. Thus, these three tests are usually applied to unordered

 contingency tables. Note that all three tests are inherently two-sided in the follow-
ing sense. A large positive value of the test statistic is evidence that there is at least one

 pair for which Equation 10.1 fails to hold, without specifying which pair.
If the sampling process generating the data is product multinomial, one set of mar-

ginal probabilities (the ’s, say) will equal unity. Then  reduces to the statement
that the c multinomial probabilities are the same for all rows. In other words, the null
hypothesis is equivalent to

Equation 10.2

r c× πi j

πi+ πij

j 1=

c

∑= , for i 1 2 … r, , ,=

π+j πij

i 1=

r

∑= , for j 1 2 … c, , ,=

H0:πij πi+π+ j  for all  i j,( )pairs=

r c×

i j,( )

πi+ H0

H0:π1 j π2j ... πrj π+j=  for all j 1,2,...c== = =



Unordered R x C Contingency Tables 143

In practice, product multinomial sampling arises when r populations are compared and
the observations from each population fall into c distinct categories. The null hypothesis
is that the multinomial probability of falling in the jth category, , is the
same for each population. The Pearson, likelihood-ratio, and Fisher’s tests are most
suitable when the c categories have no natural ordering (for example, geographic
regions of the country). However, more powerful tests, such as the Kruskal-Wallis test,
are available if the c categories have a natural ordering (for example, levels of toxicity).
Such tests are discussed in Chapter 11 and Chapter 12. 

Oral Lesions Data
The exact, Monte Carlo, and asymptotic versions of the Pearson chi-square test, the
likelihood-ratio test, and Fisher’s exact test can be illustrated with the following sparse
data set. Suppose that data were obtained on the location of oral lesions, in house-to-
house surveys in three geographic regions of rural India. These data are displayed here
in the form of a  contingency table, as shown in Figure 10.1. (See the SPSS Base
User’s Guide for information on how to enter the data into the Data Editor.) The
variables shown in the table are site, which indicates the specific site of the oral lesion,
and region, which indicates the geographic region. Count represents the number of
patients with oral lesions at a specific site and living in a specific geographic region.

j 1 2 …c, ,=

9 3×

Figure 10.1 Crosstabulation of oral lesions data set
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The question of interest is whether the distribution of the site of the oral lesion is signif-
icantly different in the three geographic regions. The row and column classifications for
this  table are clearly unordered, making it an appropriate data set for either the
Pearson, likelihood-ratio or Fisher’s tests. The contingency table is so sparse that the
usual chi-square asymptotic distribution with 16 degrees of freedom is not likely to yield
accurate p values.

Pearson Chi-Square Test
The Pearson chi-square test is perhaps the most commonly used procedure for testing
null hypotheses of the form shown in Equation 10.1 or Equation 10.2 for indepen-
dence of row and column classifications in an unordered  contingency table. For
any observed  table, the test statistic, , is denoted as  and is com-
puted by the formula

Equation 10.3

For the  contingency table of oral lesions data displayed in Figure 10.1,
. The test statistic and its corresponding asymptotic and exact p values

are shown in Figure 10.2.

The results show that the observed value of the test statistic is . This sta-
tistic has an asymptotic chi-square distribution with 16 degrees of freedom.

The asymptotic p value is based on the chi-square distribution with 16 degrees of
freedom. The asymptotic p value is computed as the area under the chi-square density
function to the right of . The p value of 0.14 implies that there is no row-
by-column interaction. However, this p value cannot be trusted because of the sparse-
ness of the observed contingency table. 

The exact p value is shown in the portion of the output entitled Exact Sig. (2-tailed). It
is defined by Equation 9.4 as the permutational probability . The
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Chi-Square Tests

25 cells (92.6%) have expected count less than 5. The
minimum expected count is .26.

1. 

Figure 10.2 Exact and asymptotic Pearson chi-square test for oral lesions data
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exact p value is 0.027, showing that there is a significant interaction between the site of the
lesion and the geographic region, but the asymptotic p value failed to demonstrate this. In
this example, the asymptotic p value was more conservative than the exact p value. 

Sometimes the data set is too large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 10.3 shows an unbiased estimate of the exact p value for
the Pearson chi-square test based on a crude Monte Carlo sample of 10,000 tables from
the reference set. 

The Monte Carlo method produces a 99% confidence interval for the exact p value.
Thus, although the point estimate might change slightly if you resample with a different
starting seed or a different random number generator, you can be 99% confident that the
exact p value is contained in the interval 0.022 to 0.030. Moreover, you could always
sample more tables from the reference set if you wanted to further narrow the width of
this interval. Based on this analysis, it is evident that the Monte Carlo approach leads to
the same conclusion as the exact approach, demonstrating that there is indeed a signifi-
cant row-by-column interaction in this contingency table. The asymptotic inference
failed to demonstrate any row-by-column interaction.

Likelihood-Ratio Test
The likelihood-ratio test is an alternative to the Pearson chi-square test for testing inde-
pendence of row and column classifications in an unordered  contingency table.
For any observed  contingency table, the test statistic, , is denoted as 
and is computed by the formula

Equation 10.4

Figure 10.3 Monte Carlo results for oral lesions data
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For the oral lesions data displayed in Figure 10.1, . The test statistic and
its corresponding asymptotic and exact p values are shown in Figure 10.4. 

The output shows that the observed value of the test statistic is . This sta-
tistic has an asymptotic chi-square distribution with 16 degrees of freedom. The asymp-
totic p value is computed as the area under the chi-square density function to the right
of . The p value of 0.106 implies that there is no row-by-column interac-
tion. However, this p value cannot be trusted because of the sparseness of the observed
contingency table.

The exact p value is defined by Equation 9.4 as the permutational probability
. The exact p value is 0.036, showing that there is a significant in-

teraction between the site of lesion and the geographic region, but the asymptotic p value
failed to demonstrate this. In this example, the asymptotic p value was more conservative
than the exact p value. 

Sometimes the data set is too large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 10.5 shows an unbiased estimate of the exact p value for
the likelihood-ratio test based on a crude Monte Carlo sample of 10,000 tables from the
reference set. 

LI x( ) 23.3=

Figure 10.4 Results of likelihood-ratio test for oral lesions data

23.297 16 .106 .036Likelihood RatioStatistics

Value df

Asymp.
Sig.

(2-tailed)
Exact Sig.
(2-tailed)

Values

Chi-Square Tests

LI x( ) 23.3=

LI x( ) 23.3=

Pr LI y( ) 23.3 y Γ∈≥( )

Figure 10.5 Estimate of exact p value for likelihood-ratio test based on Monte Carlo sampling
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The Monte Carlo point estimate is 0.035, which is acceptably close to the exact p value
of 0.036. More important, the Monte Carlo method also produces a confidence interval
for the exact p value. Thus, although this point estimate might change slightly if you re-
sample with a different starting seed or a different random number generator, you can
be 99% confident that the exact p value is contained in the interval 0.030 to 0.039. More-
over, you could always sample more tables from the reference set if you wanted to fur-
ther narrow the width of this interval. Based on this analysis, it is evident that the Monte
Carlo approach leads to the same conclusion as the exact approach, demonstrating that
there is indeed a significant row-by-column interaction in this contingency table. The
asymptotic inference failed to demonstrate any row-by-column interaction.

Fisher’s Exact Test
Fisher’s exact test is traditionally associated with the single  contingency table. Its
extension to unordered  tables was first proposed by Freeman and Halton (1951).
Thus, it is also known as the Freeman-Halton test. It is an alternative to the Pearson chi-
square and likelihood-ratio tests for testing independence of row and column
classifications in an unordered  contingency table. Fisher’s exact test is available
for tables larger than  through the SPSS Exact Tests option. Asymptotic results are
provided only for  tables, while exact and Monte Carlo results are available for
larger tables. For any observed  contingency table, the test statistic, , is
denoted as  and is computed by the formula

Equation 10.5

where

Equation 10.6

For the oral lesions data displayed in Figure 10.1, . The exact p values
are shown in Figure 10.6.
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Figure 10.6 Fisher’s exact test for oral lesions data
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The exact p value is defined by Equation 9.4 as the permutational probability
. The exact p value is 0.010, showing that there is a significant

interaction between the site of the lesion and the geographic region. The asymptotic result
was off the mark and failed to demonstrate a significant outcome. In this example, the
asymptotic p value was more conservative than the exact p value. 

Sometimes the data set is too large for an exact analysis, and the Monte Carlo
method must be used instead. Figure 10.7 shows an unbiased estimate of the exact p
value for Fisher’s exact test based on a crude Monte Carlo sample of 10,000 tables
from the reference set.

The Monte Carlo method produces a 99% confidence interval for the exact p value.
Thus, although this point estimate might change slightly if you resample with a different
starting seed or a different random number generator, you can be 99% confident that the
exact p value is contained in the interval 0.007 to 0.013. Moreover, you could always
sample more tables from the reference set if you wanted to further narrow the width of
this interval. Based on this analysis, it is evident that the Monte Carlo approach leads to
the same conclusion as the exact approach, demonstrating that there is indeed a signifi-
cant row-by-column interaction in this contingency table. The asymptotic inference
failed to demonstrate any row-by-column interaction.

Pr FI y( ) 19.72 y Γ∈≥( )

Figure 10.7 Monte Carlo estimate of Fisher’s exact test for oral lesions data
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Singly Ordered R x C 
Contingency Tables

The test in this chapter is applicable to  contingency tables in which the rows are
unordered but the columns are ordered. This is a common setting, for example, when
comparing r different drug treatments, each generating an ordered categorical response.
It is assumed a priori that the treatments cannot be ordered according to their rate of
effectiveness. If they can be ordered according to their rate of effectiveness—for exam-
ple, if the treatments represent increasing doses of some drug—the tests in the next
chapter are more applicable.

Available Test 
SPSS Exact Tests offers the Kruskal-Wallis test for analyzing  contingency tables
in which the rows (r) are unordered but the columns (c) have a natural ordering.
Although the logic of the Kruskal-Wallis test can be applied to singly ordered
contingency tables, this test is performed through the Nonparametric Tests: Tests for
Several Independent Samples procedure. (See Siegal and Castellan, 1988.)

When to Use the Kruskal-Wallis Test

Use the Kruskal-Wallis test for an  contingency table in which the rows (r) are un-
ordered but the columns (c) are ordered. Note that it is very important to keep the col-
umns ordered, not the rows. In this chapter, the Kruskal-Wallis test is applied to ordinal
categorical data. See Chapter 8 for a discussion of using this test for continuous data.

Statistical Methods
The data consist of c categorical responses generated by subjects in r populations,
and cross-classified into an  contingency table, as shown in Table 9.1. The c
categorical responses are usually ordered, whereas the r populations are not. Suppose
there are  subjects in population i and each subject generates a multinomial
response falling into one of c ordered categories with respective multinomial
probabilities of  for . 
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The null hypothesis is 

 Equation 11.1

The alternative hypothesis is that at least one set of multinomial probabilities is stochas-
tically larger than at least one other set of multinomial probabilities. Specifically, for

, let

The Kruskal-Wallis test is especially suited to detecting departures from the null hypoth-
esis of the form

 Equation 11.2

with strict inequality for at least one j. In other words, you want to reject  when at
least one of the populations is more responsive than the others.

Tumor Regression Rates Data
The tumor regression rates of five chemotherapy regimens, Cytoxan (CTX) alone,
Cyclohexyl-chloroethyl nitrosurea (CCNU) alone, Methotrexate (MTX) alone,
CTX+MTX, and CTX+CCNU+MTX were compared in a small clinical trial. Tumor
regression was measured on a three-point scale: no response, partial response, or
complete response. The crosstabulation of the results is shown in Figure 11.1. 
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Figure 11.1 Crosstabulation of tumor regression data
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Although Figure 11.1 shows the data in crosstabulated format to illustrate the concept
of applying the Kruskal-Wallis test to singly ordered tables, this test is obtained from the
Nonparametric Tests procedure, and your data must be structured appropriately for Non-
parametric Tests. Figure 11.2 shows these data displayed in the Data Editor. The data
consist of two variables. Chemo is a grouping variable that indicates the chemotherapy
regimen, and regressn is an ordered categorical variable with three values, where 1=No
Response, 2=Partial Response, and 3=Complete Response. Note that although variable
labels are displayed, these variables must be numeric.

Small pilot studies like this one are frequently conducted as a preliminary step to
planning a large-scale randomized clinical trial. The test in this section may be used to
determine whether or not the five drug regimens are significantly different with respect
to their tumor regression rates. Notice how appropriate the alternative hypothesis,
shown in Equation 11.2, is for this situation. It can be used to detect departures from the
null hypothesis in which one or more drugs shift the responses from no response to
partial or complete responses. The results of the Kruskal-Wallis test are shown in Figure
11.3.

Figure 11.2 Tumor regression data displayed in the Data Editor
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The observed value of the test statistic t, calculated by Equation 8.34, is 8.682. The
asymptotic two-sided p value is based on the chi-square distribution with four degrees
of freedom. The asymptotic p value is obtained as the area under the chi-square density
function to the right of 8.682. This p value is 0.070. However, this p value is not reliable
because of the sparseness of the observed contingency table.

The exact p value is defined by Equation 8.7 as the permutational probability
. The exact p value is 0.039, which implies that there is a

statistically significant difference between the five modes of chemotherapy. The
asymptotic inference failed to demonstrate this. Below the exact p value is the point
probability . This probability, 0.001, is a natural measure of the
discreteness of the test statistic. Some statisticians recommend subtracting half of its
value from the exact p value, in order to yield a less conservative mid-p value. (For more
information on the role of the mid-p method in exact inference, see Lancaster, 1961; Pratt
and Gibbons, 1981; and Miettinen, 1985.)

 Sometimes the data set is too large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 11.4 shows an unbiased estimate of the exact p value for
the Kruskal-Wallis test based on a crude Monte Carlo sample of 10,000 tables from the
reference set.

Figure 11.3 Results of Kruskal-Wallis test for tumor regression data
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The Monte Carlo point estimate is 0.043, which is practically the same as the exact p
value of 0.039. Moreover, the Monte Carlo method also produces a confidence interval
for the exact p value. Thus, although this point estimate might change slightly if you
resample with a different starting seed or a different random number generator, you can
be 99% confident that the exact p value is contained in the interval 0.037 to 0.048. More
tables could be sampled from the reference set to further narrow the width of this
interval. Based on this analysis, it is evident that the Monte Carlo approach leads to the
same conclusion as the exact approach, demonstrating that there is indeed a significant
row and column interaction in this contingency table. The asymptotic inference
produced a p value of 0.070, and thus failed to demonstrate a statistically significant
row-by-column interaction.

Figure 11.4 Monte Carlo results for tumor regression data
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Doubly Ordered R x C 
Contingency Tables

The tests in this chapter are applicable to  contingency tables in which both the
rows and columns are ordered. A typical example would be an  table obtained
from a dose-response study. Here the rows (r) represent progressively increasing doses
of some drug, and the columns (c) represent progressively worsening levels of drug
toxicity. The goal is to test the null hypothesis that the response rates are the same at all
dose levels. The tests in this chapter exploit the double ordering so as to have good
power against alternative hypotheses in which an increase in the dose level leads to an
increase in the toxicity level.

Available Tests
SPSS Exact Tests offers two tests for doubly ordered  contingency tables: the
Jonckheere-Terpstra test and the linear-by-linear association test. Asymptotically,
both test statistics converge to the standard normal distribution or, equivalently, the
squares of these statistics converge to the chi-square distribution with one degree of
freedom. Both the exact and asymptotic p values are available from SPSS Exact Tests.
The asymptotic p value is provided by default, while the exact p value must be specif-
ically requested. If a data set is too large for the exact p value to be computed, SPSS
Exact Tests offers a special option whereby the exact p value is estimated up to Monte
Carlo accuracy. Although the logic of the Jonckheere-Terpstra test can be applied to
doubly ordered contingency tables, this test is performed through the Nonparametric
Tests: Tests for Several Independent Samples procedure. Table 12.1 shows the two
available tests, the procedure from which each can be obtained, and a bibliographical
reference to each test. 

Table 12.1 Available tests

Test Procedure Reference

Jonckheere-Terpstra test Nonparametric Tests: 
K Independent Samples

Lehmann (1973)

Linear-by-linear association test Crosstabs Agresti (1990)

r c×
r c×

r c×

12
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In this chapter, the null and alternative hypotheses for these tests are specified, appro-
priate test statistics are defined, and each test is illustrated with a data set.

When to Use Each Test

The Jonckheere-Terpstra and linear-by-linear association tests, while not asymptotically
equivalent, are competitors for testing row and column interaction in a doubly ordered

 table. There has been no formal statistical research on which test has greater
power. Historically, the Jonckheere-Terpstra test was developed for testing continuous
data in a nonparametric setting, while the linear-by-linear association test was used for
testing categorical data in a loglinear models setting. However, either test is applicable
for computing p values in  contingency tables as long as both the rows and columns
have a natural ordering. In this chapter, the Jonckheere-Terpstra test is applied to ordinal
categorical data. See Chapter 8 for a discussion of using this test for continuous data.
The linear-by-linear association test has some additional flexibility in weighting the
ordering and in weighting the relative importance of successive rows or columns of the
contingency table through a suitable choice of row and column scores. This flexibility
is illustrated in the treatment of the numerical example in “Linear-by-Linear Association
Test” on p. 161.

Statistical Methods
Suppose that each response must fall into one of c ordinal categories according to a mul-
tinomial distribution. Let mi responses from population i fall into the c ordinal categories
with respective multinomial probabilities of

 

for . The null hypothesis is 

Equation 12.1

To specify the alternative hypothesis, define

Equation 12.2

r c×

r c×

Πi πi1 πi2 π...,πic, ,( )=

i 1 2 ...,r, ,=

H0:Π1 Π2 ... Πr= = =

ϒi j πi l

l 1=

j

∑=
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for . Since the rows are ordered, it is possible to define one-sided alterna-
tive hypotheses of the form

Equation 12.3

or

Equation 12.4

for , with strict inequality of at least one j. Both the Jonckheere-Terpstra
and the linear-by-linear association tests are particularly appropriate for detecting
departures from the null hypothesis of the form  or , or for detecting the two-sided
alternative hypothesis that either  or  is true. Hypothesis  implies that as you
move from row i to row , the probability of the response falling in category

 rather than in category j increases. Hypothesis  states the opposite, that as
you move down a row, the probability of falling into the next higher category decreases.
The test statistics for the Jonckheere-Terpstra and the linear-by-linear association tests
are so defined that large positive values reject  in favor of , while large negative
values reject  in favor of .

Dose-Response Data
Patients were treated with a drug at four dose levels (100mg, 200mg, 300mg, 400mg)
and then monitored for toxicity. The data are tabulated in Figure 12.1. 

Notice that there is a natural ordering across both the rows and the columns of the above
 contingency table. There is also the suggestion that progressively increasing drug

doses lead to increases in drug toxicity.

i 1 2 ... r, , ,=

H1:ϒ1j ϒ2 j ... ϒrj≤ ≤ ≤

H’1:ϒ1j ϒ2 j ... ϒrj≥ ≥ ≥

j 1 2 ... c, , ,=

H1 H’1
H1 H’1 H1

i 1+( )
j 1+( ) H’1

H0 H1
H0 H’1

Figure 12.1 Crosstabulation of dose-response data
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Jonckheere-Terpstra Test 
Figure 12.1 shows the data in crosstabulated format to illustrate the concept of applying
the Jonckheere-Terpstra test to doubly ordered tables, however this test is obtained from
the Nonparametric Tests procedure, and your data must be structured appropriately for
Nonparametric Tests. Figure 12.2 shows a portion of these data displayed in the Data
Editor. The data consist of two variables. Dose is an ordered grouping variable that
indicates dose level, and toxicity is an ordered categorical variable with four values,
where 1=Mild, 2=Moderate, 3=Severe, and 4=Death. Note that although value labels
are displayed, these variables must be numeric. This is a large data set, with 227 cases,
and therefore Figure 12.2 shows only a small subset of these data in order to illustrate
the necessary data structure for the Jonckheere-Terpstra test. The full data set was used
in the following example.

You can run the Jonckheere-Terpstra test on the dose-response data shown in Figure
12.2. The results are shown in Figure 12.3.

Figure 12.2 Dose-response data, displayed in the Data Editor
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The value of the observed test statistic, defined by Equation 8.38, is , the mean
is , the standard deviation is 181.8, and the standardized test statistic, cal-
culated by Equation 8.41, is . The standardized statistic is normally distributed
with a mean of 0 and a variance of 1, while its square is chi-square distributed with one
degree of freedom.

The asymptotic two-sided p values are evaluated as the tail areas under a standard
normal distribution. In calculating the one-sided p value, which is not displayed in the
output, a choice must be made as to whether to select the left tail or the right tail at the
observed value . In SPSS Exact Tests, this decision is made by selecting the
tail area with the smaller probability. Thus, the asymptotic one-sided p value is
calculated as

Equation 12.5

where  is the tail area from  to z under a standard normal distribution. In the
present example, it is the right tail area that is the smaller of the two, so that the asymp-
totic one-sided p value is evaluated as the normal approximation to ,
which works out to 0.0490. The asymptotic two-sided p value is defined as double the
one-sided:

Equation 12.6

Since the square of a standard normal variate is a chi-square variate with one degree of
freedom, an equivalent alternative way to compute the asymptotic two-sided p value is
to evaluate the tail area to the right of  from a chi-square distribution with one
degree of freedom. It is easy to verify that this too will yield 0.099 as the asymptotic
two-sided p value.

The exact one-sided p value is computed as the smaller of two permutational
probabilities:

Equation 12.7
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Figure 12.3 Results of Jonckheere-Terpstra test for dose-response data

t 9127=
E T( ) 8828=

t∗ 1.65=

t∗ 1.65=

p̃1 min Φ t*( ) 1 Φ t*( )–,{ }=

Φ z( ) ∞–

Pr T* 1.65≥( )

p̃2 2p̃1 0.0994= =

1.65( )2

p1 min Pr T* 1.65≤( ) Pr T∗ 1.65≥( ),{ }=



160 Chapter 12

In the present example, the smaller permutational probability is the one that evaluates
the right tail. It is displayed on the screen as . The exact one-
sided p value is the point probability . This probability, 0.000, is a natural
measure of the discreteness of the test statistic. Some statisticians advocate subtracting
half its value from the exact p value, thereby yielding a less conservative mid-p value.
(See Lancaster, 1961; Pratt and Gibbons, 1981; and Miettinen, 1985 for more
information on the role of the mid-p value in exact inference.) Equation 12.8 defines the
exact two-sided p value

Equation 12.8

Notice that this definition will produce the same answer as Equation 9.4, with
for all .

Sometimes the data set is too large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 12.4 displays an unbiased estimate of the exact one- and
two-sided p value for the Jonckheere-Terpstra test based on a crude Monte Carlo sample
of 10,000 tables from the reference set.

The Monte Carlo point estimate of the exact one-sided p value is 0.051, which is very
close to the exact one-sided p value of 0.049. Moreover, the Monte Carlo method also
produces a confidence interval for the exact p value. Thus, although this point estimate
might change slightly if you resample with a different starting seed or a different random
number generator, you can be 99% confident that the exact p value is contained in the
interval 0.045 to 0.057. The Monte Carlo point estimate of the exact two-sided p value
is 0.101, and the corresponding 99% confidence interval is 0.093 to 0.109. More tables
could be sampled from the reference set to further narrow the widths of these intervals.

Pr T* 1.65≥( ) 0.049=
Pr T* 1.65=( )

p2 Pr T* 1.648≥( ) 0.100= =

D y( ) T∗ y( )( )2= y Γ∈

Figure 12.4 Monte Carlo results for Jonckheere-Terpstra test for dose-response data
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Linear-by-Linear Association Test
The linear-by-linear association test orders the tables in Γ according to the linear rank
statistic. Thus, if the observed table is x, the unnormalized test statistic is

Equation 12.9

where  are arbitrary row scores, and  are arbitrary
column scores. Under the null hypothesis of no row-by-column interaction, the linear-
by-linear statistic has a mean of

Equation 12.10

and a variance of

Equation 12.11

See Agresti (1990) for more information. The asymptotic distribution of 

Equation 12.12

is normal, with a mean of 0 and a variance of 1, where LL* denotes the standardized
version of LL. The square of the normalized statistic is distributed as chi-square with one
degree of freedom.

Next, run the linear-by-linear association test on the dose-response data shown in
Figure 12.1. The results are shown in Figure 12.5.
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The upper portion of the output displays the asymptotic two-sided p value. The p values
are evaluated as tail areas under a chi-square distribution. The standardized value for the
linear-by-linear association test is . This value is normally distributed with
a mean of 0 and a variance of 1. The chi-square value, 3.264, is the square of this
standardized value. The asymptotic two-sided p value is calculated under a chi-square
distribution.

The exact one- and two-sided p values are also displayed in the output. The exact
one-sided p value is computed as the smaller of two permutational probabilities: 

Equation 12.13

In the present example, the smaller permutational probability is the one that evaluates
the right tail. This value is 0.044. The exact one-sided p value is the point probability

. This probability, 0.012, is a natural measure of the discreteness
of the test statistic. Some statisticians advocate subtracting half its value from the exact
p value, thereby yielding a less conservative mid-p value. (For more information on the
role of the mid-p method in exact inference, see Lancaster, 1961; Pratt and Gibbons;
1981, and Miettinen, 1985.) In Equation 12.14, the point probability is the exact two-
sided p value

Equation 12.14

Notice that this definition will produce the same answer as Equation 9.4, with
 for all .

Sometimes the data set is too large for an exact analysis, and the Monte Carlo method
must be used instead. Figure 12.6 displays an unbiased estimate of the exact one- and
two-sided p values for the linear-by-linear association test based on a crude Monte Carlo
sample of 10,000 tables from the reference set.

Figure 12.5 Results of linear-by-linear association test
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The Monte Carlo point estimate of the exact one-sided p value is 0.046, which is very
close to the exact one-sided p value of 0.044. Moreover, the Monte Carlo method also
produces a confidence interval for the exact p value. Thus, although this point estimate
might change slightly if you resample with a different starting seed or a different random
number generator, you can be 99% confident that the exact p value is contained in the
interval 0.040 to 0.051. The Monte Carlo point estimate of the exact two-sided p value
is 0.081, and the corresponding 99% confidence interval is 0.073 to 0.088. More tables
could be sampled from the reference set to further narrow the widths of these intervals.
One important advantage of the linear-by-linear association test over the Jonckheere-
Terpstra test is its ability to specify arbitrary row and column scores. Suppose, for
example, that you want to penalize the greater toxicity levels by greater amounts
through the unequally spaced scores (1, 3, 9, 27). The crosstabulation of the new data is
shown in Figure 12.7.

Figure 12.6 Monte Carlo results for linear-by-linear association test
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Figure 12.7 Drug dose data penalized at greater toxicity levels
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Figure 12.8 shows the results of the linear-by-linear association test on these scores.

Observe now that the one-sided asymptotic p value is 0.042, , which is statis-
tically significant, but that the one-sided exact p value (0.050) is not statistically signif-
icant at the 5% level. Inference based on asymptotic theory, with a rigid 5% criterion for
claiming statistical significance, would therefore lead to an incorrect conclusion.

Figure 12.8 Results of linear-by-linear association test on adjusted data
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Measures of Association

This chapter introduces some definitions and notation needed to estimate, test, and
interpret the various measures of association computed by SPSS Exact Tests. The
methods discussed here provide the necessary background for the statistical procedures
described in Chapter 14, Chapter 15, and Chapter 16.

Technically, there is a distinction between an actual measure of association, regarded
as a population parameter, and its estimate from a finite sample. For example, the
correlation coefficient ρ is a population parameter in a bivariate normal distribution,
whereas Pearson’s product moment coefficient R is an estimate of ρ, based on a finite
sample from this distribution. However, in this chapter, the term “measure of association”
will be used to refer to either a population parameter or an estimate from a finite sample,
and it will be clear from the context which is intended. In particular, the formulas for the
various measures of association discussed in this chapter refer to sample estimates and
their associated standard errors, not to underlying population parameters. Formulas are
not provided for the actual population parameters. For each measure of association, the
following statistics are provided:

• A point estimate for the measure of association (most often this will be the maxi-
mum-likelihood estimate [MLE]).

• Its asymptotic standard error, evaluated at the maximum-likelihood estimate
(ASE1).

• Asymptotic two-sided p values for testing the null hypothesis that the measure of
association is 0.

• Exact two-sided p values (possibly up to Monte Carlo accuracy) for testing the null
hypothesis that the measure of association is 0.

Representing Data in Crosstabular Form
All of the measures of association considered in this book are defined from data that
can be represented in the form of the  contingency table, as shown in Table 13.1.r c×

13
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This  table is formed from N observations cross-classified into row categories (r)
and column categories (c), with  of the observations falling into row category i and
column category j. Such a table is appropriate for categorical data. For example, the row
classification might consist of three discrete age categories (young, middle-aged, and
elderly), and the column classification might consist of three discrete annual income cat-
egories ($25,000–50,000, $50,000–75000, and $75,000–100,000). These are examples
of ordered categories. Alternatively, one or both of the discrete categories might be nom-
inal. For example, the row classification might consist of three cities (Boston, New
York, and Philadelphia). In this chapter, you will define various measures of association
based on crosstabulations such as the one shown in Table 13.1.

Measures of association are also defined on data sets generated from continuous
bivariate distributions. Although such data sets are not naturally represented as
crosstabulations, it is nevertheless convenient to create artificial crosstabulations from
them in order to present one unified method of defining and computing measures of
association. To see this, let  represent a pair of random variables following a
bivariate distribution, and let  be N pairs of observations
drawn from this bivariate distribution. The data may contain ties. Moreover, the
original data might be replaced by rank scores. To accommodate these possibilities, let

 be r distinct scores assumed by the A component of the data series,
sorted in ascending order. The ’s might represent the raw data, the data replaced by
ranks, or the raw data replaced by arbitrary scores. When there are no ties, r will equal
N. Similarly, let  be c distinct scores assumed by the B component
of the data series. Now the bivariate data can be cross-classified into an 
contingency table such as Table 13.1, with  as the score for row i and  as the score
for column j. 

For example, consider the bivariate data set shown in Figure 13.1. This data set is
adapted from Siegel and Castellan (1988) with appropriate alterations to illustrate the
effect of ties. The original data are shown in Chapter 14. Each subject was measured on
two scales—authoritarianism and social status striving—and the goal was to estimate

Table 13.1 Observed r x c contingency table

Row 
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the correlation between these two measures. Figure 13.1 shows the data displayed in the
Data Editor. Author contains subjects’ measurements on the authoritarianism scale, and
status contains subjects’ measurements on the social status striving scale. Figure 13.2
shows the same data set crosstabulated as a  contingency table.

The original data consist of  pairs of observations. These data are replaced by an
equivalent contingency table. Because these data contain ties, the contingency table is

 instead of . Had the data been free of ties, every row and column sum would
have been unity, and the equivalent contingency table would have been . In this
sense, the contingency table is not a natural representation of paired continuous data,
since it can artificially expand N bivariate pairs into an  rectangular array.
However, it is convenient to represent the data in this form, since it provides a consistent
notation for defining all of the measures of association and related statistics that you will
be estimating.

5 5×

Figure 13.1 Bivariate data set

Figure 13.2 Crosstabulation of bivariate data set

N 8=

5 5× 8 8×
8 8×

N N×
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Point Estimates
Maximum-likelihood theory is used to estimate each measure of association. For this pur-
pose, Table 13.1 is constructed by taking N samples from a multinomial distribution and
observing counts  in cells (i,j) with the probability , where . Measures
of association are functions of these cell probabilities. A maximum-likelihood estimate
(MLE) is provided for each measure, along with an asymptotic standard error (ASE1)
evaluated at the MLE. All of the measures of association defined from ordinal data in
Chapter 14 and all of the measures of agreement in Chapter 16 fall in the range of –1 to
+1, with 0 implying that there is no association, –1 implying a perfect negative associa-
tion, and +1 implying a perfect positive association.

All of the measures of association defined from nominal data in Chapter 15 fall in
the range of 0 to 1, with 0 implying that there is no association and 1 implying perfect
association. 

Exact P Values
Exact p values are computed by the methods described in Chapter 9. First, the reference
set, Γ, is defined to be all  tables with the same margins as the observed table, as
shown in Equation 9.1. Under the null hypothesis that there is no association, each table

 has the hypergeometric probability , given by Equation 9.2. Then each ta-
ble  is assigned a value  corresponding to the measure of association being
investigated. 

Nominal Data

For measures of association on nominal data, only two-sided p values are defined. The
exact two-sided p value is computed by Equation 9.4, with  substituted for .
Thus,

Equation 13.1

Ordinal and Agreement Data

For measures of association based on ordinal data and for measures of agreement, only
two-sided p values are defined. Now  is a univariate test statistic ranging between
–1 and +1, with a mean of 0. A negative value for  implies a negative association
between the row and column variables, while a positive value implies a positive associa-
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tion. The exact two-sided p value is obtained by Equation 9.4, with  substituted for
. Thus,

Equation 13.2

An equivalent definition of the two-sided p value is

Equation 13.3

This definition expresses the exact two-sided p value as a sum of two exact one-sided p
values, one in the left tail and the other in the right tail of the exact distribution of .
Exact permutational distributions are not usually symmetric, so the areas in the two tails
may not be equal. This is an important distinction between exact and asymptotic p
values. In the latter case, the exact two-sided p value is always double the exact one-
sided p value by the symmetry of the asymptotic normal distribution of . 

Monte Carlo P Values
Monte Carlo p values are very close approximations to corresponding exact p values but
have the advantage that they are much easier to compute. These p values are computed
by the methods described in Chapter 9 in “Monte Carlo Two-Sided P Values” on p. 139.
For nominal data, only two-sided p values are defined. The Monte Carlo estimate of the
exact two-sided p value is obtained by Equation 9.6, with an associated confidence
interval given by Equation 9.8. In this computation, the critical region  is defined by

Equation 13.4

For measures of association based on ordinal data and for measures of agreement, two-
sided p values are defined. For two-sided p values,

Equation 13.5

Asymptotic P Values
For measures of association based on nominal data, only two-sided p values are defined.
These p values are obtained as tail areas of the chi-square distribution with

 degrees of freedom. 
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For measures of association on ordinal data and for measures of agreement, the asymptotic
standard error of the maximum-likelihood estimate under the null hypothesis (ASE0) is
obtained. Then asymptotic one- and two-sided p values are obtained by using the fact that the
ratio  converges to a standard normal distribution.M x( ) ASEO⁄
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Measures of Association for 
Ordinal Data

SPSS Exact Tests provides the following measures of association between pairs of
ordinal variables: Pearson’s product-moment correlation coefficient, Spearman’s rank-
order correlation coefficient, Kendall’s tau coefficient, Somers’ d coefficient, and the
gamma coefficient. All of these measures of association range between –1 and +1, with
0 signifying no association, –1 signifying perfect negative association, and +1
signifying perfect positive association. One other measure of association mentioned in
this chapter is Kendall’s W, also known as Kendall’s coefficient of concordance. This
test is discussed in detail in Chapter 7.

Available Measures
Table 14.1 shows the available measures of association, the procedure from which each
can be obtained, and a bibliographical reference for each test.

Table 14.1 Available tests

Measure of Association Procedure Reference

Pearson’s product-moment 
correlation

Crosstabs Siegel and Castellan (1988)

Spearman’s rank-order 
correlation

Crosstabs Siegel and Castellan (1988)

Kendall’s W Nonparametric Tests: Tests for 
Several Related Samples

Conover (1975)

Kendall’s tau-b, Kendall’s tau-c,
and Somers’ d

Crosstabs Siegel and Castellan (1988)

Gamma coefficient Crosstabs Siegel and Castellan (1988)

14
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Pearson’s Product-Moment Correlation Coefficient
Let A and B be a pair of correlated random variables. Suppose you observe N pairs of
observations  and crosstabulate them into the 
contingency table displayed as Table 13.1, in which the ’s are the distinct values
assumed by A and the ’s are the distinct values assumed by B. When the data follow
a bivariate normal distribution, the appropriate measure of association is the correlation
coefficient, ρ, between A and B. This parameter is estimated by Pearson’s product-
moment correlation coefficient, shown in Equation 14.1. In this equation,  represents
the marginal row total and  represents the marginal column total.

Equation 14.1

where

Equation 14.2

The formulas for the asymptotic standard errors are fairly complicated. These formulas
are discussed in SPSS Statistical Algorithms, 2nd Edition (1991).

You now compute Pearson’s product-moment correlation coefficient for the first
seven pairs of observations of the authoritarianism and social status striving data
discussed in Siegel and Castellan (1988). The data are shown in Figure 14.1. Author
contains subjects’ scores on the authoritarianism scale, and social contains subjects’
scores on the social status striving scale.

The results are shown in Figure 14.2
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Figure 14.1 Subset of social status striving data
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The correlation coefficient has a point estimate of . The exact two-sided p
value is 0.037 and indicates that the correlation coefficient is significantly different from
0. The corresponding asymptotic two-sided p value is 0.058 and fails to demonstrate
statistical significance at the 5% level for this small data set.

It should be noted that the computational limits for exact inference are reached rather
quickly for Pearson’s product-moment correlation coefficient with continuous data. By
the time , the Monte Carlo option should be used rather than the exact option.
Consider, for example, the complete authoritarianism data set of 12 observations (Siegel
and Castellan, 1988) shown in Figure 14.3.

For this data set, the exact two-sided p value, shown in Figure 14.5, is 0.001,
approximately half the asymptotic two-sided p value of 0.003. However, it may be time-
consuming to perform the exact calculation. In contrast, the Monte Carlo p value based
on 10,000 samples from the data set produces a significance estimate of 0.002,
practically the same as the exact p value. The 99% confidence interval for the exact p

Figure 14.2 Pearson’s product-moment correlation coefficient for subset of social status 
striving data

.739 .054 2.452 .058
1

.037

7

Pearson’s
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Interval by Interval
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Value
Asymp.

Std. Error Approx. T
Approx.

Sig.
Exact

Significance

Symmetric Measures

Based on normal approximation1. 

R 0.739=

N 10=

Figure 14.3 Complete social status striving data 
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value is (0.001, 0.003). The Monte Carlo output is shown in Figure 14.4, and the
corresponding exact output is shown in Figure 14.5. 

Spearman’s Rank-Order Correlation Coefficient

If you are reluctant to make the assumption of bivariate normality, you can use Spear-
man’s rank-order correlation coefficient instead of Pearson’s product-moment correlation
coefficient. The only difference between the two measures of association is that Pearson’s
measure uses the raw data, whereas Spearman’s uses ranks derived from the raw data.
Specifically, if the data are represented in the crosstabular form of Table 13.1, Pearson’s
measure uses the raw data as the  and  scores, while Spearman’s measure uses

Equation 14.3

for , and

Equation 14.4

Figure 14.4 Correlations for complete social status striving data using the Monte Carlo method
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Figure 14.5 Exact results for correlations for complete social status striving data
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for . Once these transformations are made, all of the remaining
calculations for the point estimate (R), the standard error (ASE1), the confidence
interval, the asymptotic p value, and the exact p value are identical to corresponding
ones for Pearson’s product-moment correlation coefficient.

Consider, for example, the data displayed in Figure 13.1. Figure 14.6 displays these
data with their ranks. Variable rauthor contains the ranks for author, the authoritarianism
scores, and variable rsocial contains the ranks for social, the social status striving scores.

Notice that tied ranks have been replaced by mid-ranks. These same rank scores could
be obtained by crosstabulating author with social, and applying Equation 14.3 and
Equation 14.4. The crosstabulation of the rank scores is shown in Figure 14.7.

Figure 14.8 shows the point and interval estimates for Spearman’s correlation coeffi-
cient for these data. The exact and asymptotic p values for testing the null hypothesis
that there is no correlation are also shown.

j 1 2 …c, ,=

Figure 14.6 Raw data and rank scores for eight-case subset of social status striving data 

Figure 14.7 Crosstabulation of rank scores for eight-case subset of social status striving data
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The Spearman rank-order correlation coefficient has a point estimate of .
The exact two-sided p value is evaluated by Equation 9.4, as discussed in “Exact P
Values” on p. 168 in Chapter 13. Its value is 0.125 and indicates that the correlation
coefficient is not significantly different from 0. The corresponding asymptotic two-
sided p value was 0.121. 

As the number of paired observations grows, it becomes increasingly difficult to
compute exact p values (i, j), and the Monte Carlo option is a better choice. Figure 14.9
shows the Monte Carlo results for the larger data set of 12 pairs of observations in Figure
14.3. The Monte Carlo sample size was 10,000. There is practically no difference
between the Monte Carlo and exact p values.

Figure 14.8 Exact results for Spearman’s correlation coefficient for eight-case subset of social 
status striving data
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Figure 14.9 Monte Carlo results for Spearman’s correlation coefficient for complete social 
status striving data
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Kendall’s W
All of the measures of association in this chapter are formed from a sequence of paired
observations. Sometimes, however, the data consist of  related samples rather than
just two related samples. Kendall’s W, also known as Kendall’s coefficient of concor-
dance, is a measure of association specially developed for this situation. It bears a close
relationship to Spearman’s rank-order correlation coefficient. For  related samples
of data, you could form  distinct pairs of samples, and each pair would
yield a value for Spearman’s rank-order correlation coefficient. Let  denote the
average of all these Spearman correlation coefficients. Then you can show that, if there
are no ties in the data,

Equation 14.5

Kendall’s W is discussed in greater detail in Chapter 7, in the section “Kendall’s W” on
p. 104, where a numerical example is also provided.

Kendall’s Tau and Somers’ d Coefficients
Kendall’s tau and Somers’ d coefficients are alternatives to Pearson’s product-moment
correlation coefficient and Spearman’s rank-order correlation coefficient for ordinal
data. The main distinction between these measures and Pearson’s or Spearman’s
measures is that you can compute the former without specifying numerical values for
the row scores, , or the column scores, . All that is needed is an implicit ordering of
the data. On the other hand, Equation 14.1, Equation 14.3, and Equation 14.4 relate the
row and column scores explicitly to the computation of Pearson’s and Spearman’s
coefficients.

Suppose that you have observed the  contingency table displayed as Table 9.1.
Kendall’s tau and Somers’ d are both based on the difference between concordant and
discordant pairs of observations in this contingency table. Since the rows and columns
of the contingency table are ordered, the location of any cell (h,k) relative to any other
cell (i,j) determines whether the observations in the two cells are concordant or
discordant. For example, if  and , both members of a paired observation
falling in cell (h,k) are smaller than the corresponding members of the paired
observation falling in cell (i,j). Thus, the two pairs are concordant. On the other hand, if

 and , the first member of the (h,k) pair is smaller, while the second member
is larger than corresponding members of the (i,j) pair. The formula

Equation 14.6
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defines the number of pairs of observations that are concordant relative to the observa-
tions in cell (i, j), and the formula

Equation 14.7

defines the number of pairs of observations that are discordant relative to the observa-
tions in cell (i, j). Thus, the total number of concordant pairs in the entire data set is

Equation 14.8

and the total number of discordant pairs in the entire data set is

Equation 14.9

Kendall’s tau and Somers’ d and their various variants are functions of . Thus,
although their respective point estimates and standard errors differ, they all produce the
same p values. Next, these measures of association will be defined and their use
illustrated through a numerical example.

Kendall’s Tau-b and Kendall’s Tau-c

Kendall’s tau coefficient has three variants, , , and . You first specify estimators
and associated asymptotic standard errors for these three variants. For a discussion of
the criteria for selecting one variant over another, see Gibbons (1993). The  and 
variants were developed to correct for ties and for categorical data. 

Kendall’s  coefficient is estimated by 

Equation 14.10

where 

Equation 14.11
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and 

Equation 14.12

Kendall’s  coefficient is estimated by

Equation 14.13

where . 

The formulas for the asymptotic standard errors are discussed in SPSS Statistical
Algorithms, 2nd Edition (1991).

Somers’ d

Somers’ d coefficient is a useful measure of association between two asymmetrically
related ordinal variables, where one of the two variables is regarded as independent and
the other as dependent. See Siegel and Castellan (1988) for a discussion of this
asymmetry. Somers’ d has three variants; one with the row variable U as the independent
variable, one with the column variable V as the independent variable, and a symmetric
version. The row-independent version of Somers’ d is

Equation 14.14

The column-independent version of Somers’ d is

Equation 14.15

The symmetric version of Somers’ d is 

Equation 14.16

The formulas for the asymptotic standard errors are discussed in SPSS Statistical
Algorithms, 2nd Edition (1991).
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Example: Smoking Habit Data

Observe that all variants of Kendall’s tau and Somers’ d are functions of . They
differ only in how they are standardized. Thus, although their point estimates and
asymptotic standard errors vary, the exact and asymptotic p values for testing the null
hypothesis that there is no association are invariant across all these measures. Consider
the crosstabulation shown in Figure 14.10 for the status of the smoking habit and the
length of the smoking habit. This data set was extracted from Siegel and Castellan
(1988). For convenience, only 96 subjects with a smoking habit between 10 and 25 years
in duration have been considered. The variables in the table are status, which indicates
the status of the smoking habit, with three categories (successful quitter, in-process
quitter, and unsuccessful quitter), and years, which indicates the duration of the
smoking habit.

Figure 14.11 shows the results for the Kendall’s tau-b, Kendall’s tau-c, and all three vari-
ants of Somers’ d for these data. The exact and asymptotic p values for testing the null
hypothesis that there is no correlation are also shown. 

P Q–

Count

22 9 8

2 1 3

14 21 16

Successful
Quitter

In-process
Quitter

Unsuccessful
Quitter

Status of
Smoking
Habit
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Years of Smoking Habit

tatus of Smoking Habit * Years of Smoking Habit CrosstabulatioFigure 14.10 Crosstabulation of cessation and years of smoking for subset of data

Figure 14.11 Kendall’s tau and Somers’ d for subset of smoking data
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Although all of these coefficients have different point estimates, their sampling
distributions are equivalent, thus leading to a common p value. The exact two-sided p
value for testing the null hypothesis that there is no association is 0.0226, and the
corresponding asymptotic two-sided p value is 0.0177.

As the number of observations grows, it becomes increasingly difficult to compute
exact p values, and the Monte Carlo option is a better choice. Figure 14.12 shows the
data for all 240 subjects who participated in the cessation of smoking study (Siegel and
Castellan, 1988). 

Figure (Continued)
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Figure 14.12 Full data set for cessation and years of smoking 
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Figure 14.13 shows the Monte Carlo results for the full data set. The Monte Carlo sample
size was 10,000. 

It is clear that a strong correlation exists between the duration and status of the smoking
habit. The exact two-sided p value for testing the null hypothesis that there is no
correlation is at most 0.0003 with 95% confidence.

Figure 14.13 Monte Carlo results for Kendall’s tau and Somers’ d for full smoking data
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Gamma Coefficient
The gamma coefficient is yet another measure of association between two ordinal
variables. It was first discussed extensively by Goodman and Kruskal (1963). It is an
alternative to Kendall’s tau and Somers’ d for ordered categorical variables. Like these
measures, it is defined in terms of the difference between concordant and discordant
pairs, and so does not require the variables to take on actual numerical values. Using the
notation developed in the previous section, the gamma coefficient is estimated by

Equation 14.17

If the data contain no ties, this definition of gamma will yield the same exact and
asymptotic p values as Kendall’s tau and Somers’ d. In general, however, inference based
on gamma can differ from inference based on the latter two coefficients. You can now
analyze the small data set of cessation and smoking habit displayed in Figure 14.10. Figure
14.14 displays point and interval estimates of gamma along with exact and asymptotic p
values for testing the null hypothesis that there is no association. 

The gamma coefficient is estimated as 0.345. The exact two-sided p value for testing the
null hypothesis that there is no association is 0.024. 

As the number of observations grows, it becomes increasingly difficult to compute
exact p values, and the Monte Carlo option is a better choice. Figure 14.15 shows the
Monte Carlo results for the full cessation and smoking habit data set shown in Figure
14.12. The Monte Carlo sample size was 10,000.
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It is clear that a strong correlation exists between the duration and status of the smoking
habit. The exact two-sided p value for testing the null hypothesis that there is no
correlation is at most 0.0005 with 99% confidence.

Figure 14.15 Monte Carlo results for gamma coefficient for full smoking data 
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Measures of Association 
for Nominal Data

Measures of association for nominal data are defined on  contingency tables like
Table 13.1. However, these measures do not depend on the particular order in which the
rows and columns are arranged, nor do they depend on row and column scores. Inter-
changing two rows or two columns does not alter these measures of association. SPSS
Exact Tests provides the following measures of association between pairs of nominal
categorical variables:

Contingency Coefficients. These coefficients are derived from the Pearson chi-square
statistic. They include the Pearson coefficient, Cramér’s V coefficient, and the phi
coefficient.

Proportional Reduction in Prediction Error. Goodman and Kruskal’s tau and the
uncertainty coefficient are measures for assessing the power of one variable to predict
the classification of members of the population with respect to a second variable. 

These measures of association range between 0 and 1, with 0 signifying no associa-
tion and 1 signifying perfect association.

Available Measures
Table 15.1 shows the available tests, the procedure from which they can be obtained,
and a bibliographical reference for each test.

Contingency Coefficients
All of the measures of association in this family are functions of the Pearson chi-square
statistic , specified by Equation 10.3. They include the phi contingency coeffi-

Table 15.1 Available tests

Measure of Association Procedure Reference

Contingency coefficients Crosstabs Liebetrau (1983)
Goodman and Kruskal’s tau Crosstabs Bishop et al. (1975)
Uncertainty coefficient Crosstabs IMSL (1994)

r c×

CH x( )

15
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cient, the Pearson contingency coefficient, and Cramér’s V contingency coefficient. All
of these measures have an identical two-sided p value for testing the null hypothesis that
there is no association, which is the same as the Pearson chi-square p value and which
is based on the distribution of . SPSS Exact Tests reports both the asymptotic and
exact p values. 

The formulas for computing the three contingency coefficients are given below. The
formula for each measure involves taking the square root of a function of . The
positive root is always selected. For a more detailed discussion of these measures of as-
sociation, see Liebetrau (1983).

The phi contingency coefficient is given by the formula

Equation 15.1

The minimum value assumed by  is 0, signifying no association. However, its upper
bound is not fixed but depends on the dimensions of the contingency table. Therefore,
it is not a very suitable measure for arbitrary  tables. For the special case of the

 table, Gibbons (1985) shows that  is identical to the absolute value of Kendall’s
 coefficient and is evaluated by the formula

Equation 15.2

Notice from Equation 15.2 that, for the  contingency table,  could be either
positive or negative, which implies a positive or negative association in the  table.

The Pearson contingency coefficient is given by the formula

 Equation 15.3

This contingency coefficient assumes a minimum value of 0, signifying no association.
It is bounded from above by 1, signifying perfect association. However, the maximum
value attainable by CC is , where . Thus, the range of this
contingency coefficient still depends on the dimensions of the  table. Cramér’s V
coefficient ranges between 0 and 1, with 0 signifying no association and 1 signifying
perfect association. It is given by

Equation 15.4
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SPSS Exact Tests reports the point estimate of the contingency coefficient. The formulas
for these asymptotic standard errors are fairly complicated. These formulas are described
in SPSS Statistical Algorithms, 2nd Edition (1991).

These measures may be used to analyze an unordered contingency table given in Sie-
gel and Castellan (1988). The data consist of a crosstabulation of three possible responses
(completed, declined, no response) to a questionnaire concerning the financial account-
ing standards used by six different organizations responsible for maintaining such stan-
dards. These organizations are identified only by their initials (AAA, AICPA, FAF, FASB,
FEI, and NAA). The crosstabulated data are shown in Figure 15.1.

First, these data are analyzed using only the first three columns of Figure 15.1. For this
subset of the data, Figure 15.2 shows the results for the contingency coefficients. The
exact two-sided p value for testing the null hypothesis that there is no association is also
reported. Its value is 0.090, slightly lower than the asymptotic p value of 0.092. 

The next analysis uses the full data set, which consists of all six columns of Figure 15.1.
This data set is too large to compute the exact p value. However, a 99% confidence in-

Figure 15.1 Crosstabulation of response to survey and finance organization

Count

8 8 3 11 17 2

2 5 1 2 13

12 8 15 19 18

Completed

Declined

No
Response

Survey Disposition

AAA AICPA FAF FASB FEI NAA

Finance Organization

Survey Disposition * Finance Organization Crosstabulation

Figure 15.2 Phi and Cramér’s V for first three columns for survey and finance organization data

.359 .092 .090

.254 .092 .090

62

Phi

Cramer’s
V

Nominal by Nominal

N of Valid Cases

Value
Approx.

Sig.
Exact

Significance

Symmetric Measures



188 Chapter 15

terval on the exact p value based on 10,000 Monte Carlo samples is easily obtained. The
results are shown in Figure 15.3.

The p value for testing the null hypothesis that there is no association is at most 0.0005
with 99% confidence, which implies that the row and column classifications are not
independent.

Proportional Reduction in Prediction Error
In regression problems involving continuous data, the coefficient of determination (or 
statistic) is often used to measure the proportion of the total variation attributable to the
explanatory variable. It would be useful to provide an analog of this index for nominal cat-
egorical data. Two measures of association are available for this purpose. One is Goodman
and Kruskal’s tau, and the other is the uncertainty coefficient. Both measure the proportion
of variation in the row variable that can be attributed to the column variable.

Goodman and Kruskal’s Tau

Goodman and Kruskal’s tau coefficient for measuring the proportion of the variation in
the row variable attributable to the column variable is estimated by

Equation 15.5

Figure 15.3 Monte Carlo results for phi and Cramér’s V
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.511 .000 .0000
1
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Symmetric Measures

Based on 10000 and seed 2000000 ...1. 
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This coefficient ranges between 0 and 1, with 0 implying no reduction in row variance
when the column category is known, and 1 implying complete reduction in row variance
when the column category is known. An asymptotic confidence interval for the Good-
man and Kruskal’s tau can be obtained by computing the asymptotic standard error
ASE1 and applying it to Equation 13.1. The exact two-sided p values for testing the null
hypothesis that there is no association is obtained by substituting  for  in
Equation 13.1. The corresponding asymptotic two-sided p value is obtained by using the
fact that  converges to a chi-square distribution with  degrees of
freedom.

Uncertainty Coefficient 

The uncertainty coefficient is derived from the likelihood-ratio statistic and is an alter-
native way to measure the proportion of the variation in the row variable attributable to
the column variable. It is estimated by

Equation 15.6

This uncertainty coefficient ranges between 0 and 1, with 0 implying no reduction in
row variance when the column category is known, and 1 implying complete reduction
in row variance when the column category is known.

An asymptotic confidence interval for the uncertainty coefficient can be obtained by
computing the asymptotic standard error ASE1 and applying it to Equation 13.1. The
exact two-sided p values for testing the null hypothesis that there is no association is
obtained by substituting  for in Equation 13.1. The corresponding as-
ymptotic two-sided p value is obtained by using the fact that  converges to a
chi-square distribution with  degrees of freedom.

Example: Party Preference Data

The data set shown in Figure 15.4 illustrates the use of Goodman and Kruskal’s tau and
the uncertainty coefficient. The data set compares party preference with preferred cold war
ally in Great Britain. These data are taken from Bishop, Fienberg, and Holland (1975). 
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First, Goodman and Kruskal’s tau is estimated, a confidence interval is obtained for it,
and the null hypothesis that there is no association in the population is tested. The results
are shown in Figure 15.5.

The observed value of Goodman and Kruskal’s tau with ally, 0.013, is rather small and
leads to the conclusion that 1.3% of the variation in choice of preferred ally is explained
by knowing a person’s party preference. The exact p value, 0.045, implies that the null
hypothesis that there is no association can be rejected at the 5% level. In other words,
the small amount of explained variation is real, not due to sampling error.

Next, the uncertainty coefficient is estimated, a confidence interval is obtained for it,
and the null hypothesis that there is no association in the population is tested. The results
are shown in Figure 15.6.

Count

225 3

53 1

206 12

Right

Center

Left

Party Preference

U.S. U.S.S.R.

Preferred Cold War
Ally

Party Preference * Preferred Cold War Ally
Crosstabulation

Figure 15.4 Crosstabulation of party preference with preferred cold war ally

Figure 15.5 Goodman and Kruskal’s tau for party preference and preferred cold war ally data
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Once again, the observed value of the uncertainty coefficient with ally, 0.007, is ex-
tremely small. However, the exact two-sided p value, 0.034, is statistically significant
and indicates that the measure is indeed greater than 0.

Figure 15.6 Uncertainty coefficient for party preference and preferred cold war ally data
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Measures of Agreement

This chapter discusses kappa, a measure used to assess the level of agreement between
two observers classifying a sample of objects on the same categorical scale. The joint
ratings of the observers are displayed on a square  contingency table such as Table
13.1. Kappa (see Agresti, 1990) can be obtained using the Crosstabs procedure. 

Kappa
The kappa coefficient is defined on a square  contingency table. It is estimated by

Equation 16.1

Notice that the kappa statistic does not depend on the off-diagonal elements of the
observed contingency table. If the row classification is by one observer, and the column
classification is by a second observer, this measure of agreement is determined entirely
by the diagonal elements. 

Example: Student Teacher Ratings

Consider the following data on student teachers who were rated by their supervisors,
represented by variables super1 and super2. The students were rated as authoritarian,
democratic, or permissive. The full data set of 72 student teachers is available in Bish-
op, Fienberg, and Holland (1975). In the following example, a subset of 10 students is
considered. The crosstabulated data are shown in Figure 16.1.
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The results for the kappa statistic are shown in Figure 16.2. 

The value of kappa is estimated at . The positive sign on the kappa statistic
implies that the agreement is positive. The exact two-sided p value of 0.048 is
significant; thus, you can reject the null hypothesis that there is no agreement. Notice,
however, that the asymptotic two-sided p value is not very accurate for this small data
set. It is less than one half of the exact p value.

The same analysis conducted with the full data set of 72 observations is tabulated in
Figure 16.3.

Figure 16.1 Crosstabulation of student teachers rated by supervisors (partial data)

Count

3 1

2

2 2

Authoritarian

Democratic

Permissive

Rating by
Supervisor
1

Authoritarian Democratic Permissive

Rating by Supervisor 2

Rating by Supervisor 1 * Rating by Supervisor 2 Crosstabulation

Figure 16.2 Kappa for student teacher ratings data
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Figure 16.3 Crosstabulation of student teachers rated by supervisors (full data)

Count

17 4 8

5 12

10 3 13
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For this larger data set, it is more efficient to perform the Monte Carlo inference rather
than the exact inference. Figure 16.4 shows the results based on 10,000 Monte Carlo
samples.

In the full data set, the kappa statistic has a smaller value, 0.362. However, due to the
larger sample size this observed statistic is highly significant, with a two-sided p value
guaranteed to be less than 0.0005 with 99% confidence.

Figure 16.4 Monte Carlo results for student teacher ratings data
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CROSSTABS 

General mode: 

CROSSTABS [TABLES=]varlist BY varlist [BY...] [/varlist...]

 [/MISSING={TABLE**}] 
           {INCLUDE} 

 [/WRITE[={NONE**}]] 
          {CELLS }

Integer mode: 

CROSSTABS VARIABLES=varlist(min,max) [varlist...]

 /TABLES=varlist BY varlist [BY...] [/varlist...]

 [/MISSING={TABLE**}] 
           {INCLUDE}
           {REPORT }

 [/WRITE[={NONE**}]] 
          {CELLS } 
          {ALL   } 

Both modes:

[/FORMAT={LABELS** }  {AVALUE**}  {NOINDEX**}  {TABLES**} {BOX**}] 
          {NOLABELS }  {DVALUE  }  {INDEX    }  {NOTABLES} {NOBOX} 
          {NOVALLABS} 

 [/CELLS=[{COUNT**}]  [ROW   ]  [EXPECTED]  [SRESID ]] 
          {NONE   }   [COLUMN]  [RESID   ]  [ASRESID] 
                      [TOTAL ]              [ALL    ] 

 [/STATISTICS=[CHISQ]  [LAMBDA]  [BTAU]  [GAMMA]  [ETA ]] 
              [PHI  ]  [UC    ]  [CTAU]  [D    ]  [CORR] 

[/METHOD={MC [CIN({99.0**})] [SAMPLES(10000**})] }]
                 (value)            (value)
          {EXACT [TIMER({5})]                     }
                       {value} 

**Default if the subcommand is omitted.

Example: 
CROSSTABS TABLES=FEAR BY SEX
/CELLS=ROW COLUMN EXPECTED RESIDUALS
/STATISTICS=CHISQ
/METHOD=MC SAMPLES(10000) CIN(95).
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New Syntax

A new /METHOD subcommand allows you to specify the method used to calculate signifi-
cance levels. See the SPSS Base Syntax Reference Guide for a complete description of the
full CROSSTABS syntax.

METHOD Subcommand

Displays additional results for each statistic requested. If no METHOD subcommand is spec-
ified, the standard asymptotic results are displayed. If fractional weights have been specified,
results for all methods will be calculated on the weight rounded to the nearest integer.

MC Displays an unbiased point estimate and confidence interval based on the
Monte Carlo sampling method, for all statistics. Asymptotic results are also
displayed. When exact results can be calculated, they will be provided instead
of the Monte Carlo results. See Appendix A for details of the situations under
which exact results are provided instead of Monte Carlo results. Two optional
keywords, CIN and SAMPLES, are provided if you choose ���������	.

CIN(n) Controls the confidence level for the Monte Carlo estimate. CIN is available
only when ���������	 is specified. CIN has a default value of 99.0. You
can specify a confidence interval between 0.01 and 99.9, inclusive. 

SAMPLES Specifies the number of tables sampled from the reference set when calculat-
ing the Monte Carlo estimate of the exact p value. Larger sample sizes lead to
narrower confidence limits, but also take longer to calculate. You can specify
any integer between 1 and 1,000,000,000 as the sample size. SAMPLES has a
default value of 10,000.

EXACT Computes the exact significance level for all statistics, in addition to the asymp-
totic results. If both the EXACT and MC keywords are specified, only exact re-
sults are provided. Calculating the exact p value can be memory-intensive. If
you have specified ���������
�	� and find that you have insufficient
memory to calculate results, you should first close any other applications that
are currently running in order to make more memory available. You can also
enlarge the size of your swap file (see your Windows manual for more infor-
mation). If you still cannot obtain exact results, specify ���������	 to ob-
tain the Monte Carlo estimate of the exact p value. An optional TIMER keyword
is available if you choose ���������
�	�.

TIMER(n) Specifies the maximum number of minutes allowed to run the exact analysis
for each statistic. If the time limit is reached, the test is terminated, no exact
results are provided, and SPSS begins to calculate the next test in the analy-
sis. TIMER is available only when ���������
�	� is specified. You can
specify any integer value for TIMER. Specifying a value of 0 for TIMER turns
the timer off completely. TIMER has a default value of 5 minutes. If a test ex-
ceeds a time limit of 30 minutes, it is recommended that you use the Monte
Carlo, rather than the exact, method.
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NPAR TESTS

NPAR TESTS [CHISQUARE=varlist[(lo,hi)]/] [/EXPECTED={EQUAL      }] 
                                                    {f1,f2,...fn}

 [/K-S({UNIFORM [min,max]   })=varlist]
       {NORMAL [mean,stddev]}
       {POISSON [mean]      }

 [/RUNS({MEAN  })=varlist]
        {MEDIAN}
        {MODE  }
        {value }

 [/BINOMIAL[({.5})]=varlist[({value1,value2})]] 
             { p}            {value        }

 [/MCNEMAR=varlist [WITH varlist [(PAIRED)]]]

 [/SIGN=varlist [WITH varlist [(PAIRED)]]]

 [/WILCOXON=varlist [WITH varlist [(PAIRED)]]]

|/MH=varlist [WITH varlist [(PAIRED)]]]

 [/COCHRAN=varlist]

 [/FRIEDMAN=varlist]

 [/KENDALL=varlist]

 [/M-W=varlist BY var (value1,value2)]

 [/K-S=varlist BY var (value1,value2)]

 [/W-W=varlist BY var (value1,value2)]

 [/MOSES[(n)]=varlist BY var (value1,value2)]

 [/K-W=varlist BY var (value1,value2)]

 [/MEDIAN[(value)]=varlist BY var (value1,value2)]

[/J-T=varlist BY var (value1, value2)]

 [/MISSING=[{ANALYSIS**}]  [INCLUDE]] 
            {LISTWISE  }

 [/SAMPLE]

 [/STATISTICS=[DESCRIPTIVES]  [QUARTILES] [ALL]] 

[/METHOD={MC [CIN({99.0**})] [SAMPLES(10000**})] }]
                 (value)            (value)
          {EXACT [TIMER({5})]                     }
                       {value} 

**Default if the subcommand is omitted.

Example: 
NPAR TESTS K-S(UNIFORM)=V1 /K-S(NORMAL,0,1)=V2.
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New Syntax

A new /METHOD subcommand allows you to specify the method used to calculate signifi-
cance levels. See the SPSS Base Syntax Reference Guide for a complete description of the
full CROSSTABS syntax. A new /MH subcommand performs the marginal homogeneity test.
A new /J-T subcommand performs the Jonckheere-Terpstra test.

METHOD Subcommand

Displays additional results for each statistic requested. If no METHOD subcommand is spec-
ified, the standard asymptotic results are displayed.

MC Displays an unbiased point estimate and confidence interval based on the
Monte Carlo sampling method, for all statistics. Asymptotic results are also
displayed. When exact results can be calculated, they will be provided instead
of the Monte Carlo results. See Appendix A for details of the situations under
which exact results are provided instead of Monte Carlo results. Two optional
keywords, CIN and SAMPLES, are provided if you choose ���������	.

CIN(n) Controls the confidence level for the Monte Carlo estimate. CIN is available
only when ���������	 is specified. You can specify a confidence interval
between 0.01 and 99.9, inclusive. 

SAMPLES Specifies the number of tables sampled from the reference set when calculat-
ing the Monte Carlo estimate of the exact p value. Larger sample sizes lead to
narrower confidence limits, but also take longer to calculate. You can specify
any integer between 1 and 1,000,000,000 as the sample size. SAMPLES has a
default value of 10,000.

EXACT Computes the exact significance level for all statistics, in addition to the asymp-
totic results. If both the EXACT and MC keywords are specified, only exact re-
sults are provided. Calculating the exact p value can be memory-intensive. If
you have specified ���������
�	� and find that you have insufficient
memory to calculate results, you should first close any other applications that
are currently running in order to make more memory available. You can also
enlarge the size of your swap file (see your Windows manual for more infor-
mation). If you still cannot obtain exact results, specify ���������	 to ob-
tain the Monte Carlo estimate of the exact p value. An optional TIMER keyword
is available if you choose ���������
�	�.

TIMER(n) Specifies the maximum number of minutes allowed to run the exact analysis
for each statistic. If the time limit is reached, the test is terminated, no exact
results are provided, and SPSS begins to calculate the next test in the analy-
sis. TIMER is available only when ���������
�	� is specified. You can
specify any integer value for TIMER. Specifying a value of 0 for TIMER turns
the timer off completely. TIMER has a default value of 5 minutes. If a test ex-
ceeds a time limit of 30 minutes, it is recommended that you use the Monte
Carlo, rather than the exact, method.
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MH Subcommand

���� ����� ���������� !"��� ������ !	�����#�$$

MH performs the marginal homogeneity test, which tests whether combinations of values be-
tween two paired ordinal variables are equally likely. The marginal homogeneity test is typ-
ically used in repeated measures situations. This test is an extension of the McNemar test
from binary response to multinomial response. The output shows the number of distinct val-
ues for all test variables, the number of valid off-diagonal cell counts, mean, standard devi-
ation, observed and standardized values of the test statistics, the asymptotic two-tailed
probability for each pair of variables, and, if a /METHOD subcommand is specified, one-tailed
and two-tailed exact or Monte Carlo probabilities. 

Syntax

• The minimum specification is a list of two variables. Variables must be polychotomous
and must have more than two values. If the variables contain more than two values, the
McNemar test is performed.

• If keyword WITH is not specified, each variable is paired with every other variable in the
list. 

• If WITH is specified, each variable before WITH is paired with each variable after WITH. If
PAIRED is also specified, the first variable before WITH is paired with the first variable af-
ter WITH, the second variable before WITH with the second variable after WITH, and so on.
PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list. 

Operations

• The data consist of paired, dependent responses from two populations. The marginal
homogeneity test tests the equality of two multinomial  tables, and the data can be
arranged in the form of a square  contingency table. A  table is constructed
for each off-diagonal cell count. The marginal homogeneity test statistic is computed
for cases with different values for the two variables. Only combinations for which the
values for the two variables are different are considered. The first row of each 
table specifies the category chosen by population 1, and the second row specifies the
category chosen by population 2. The test statistic is calculated by summing the first
row scores across all  tables.

Example

���� ����� ������ �� �%

&&�����#��'�

• This example performs the marginal homogeneity test on variable pairs V1 and V2, V1 and
V3, and V2 and V3. The exact p values are estimated using the Monte Carlo sampling method.

c 1×
c c× 2 c×

2 c×

2 c×
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J-T Subcommand

���� ����� �(��������� )* �����+�,	���-,�����-,��

J-T (alias JONCKHEERE-TERPSTRA) performs the Jonckheere-Terpstra test, which tests
whether k independent samples defined by a grouping variable are from the same population.
This test is particularly powerful when the k populations have a natural ordering. The output
shows the number of levels in the grouping variable, the total number of cases, observed,
standardized, mean and standard deviation of the test statistic, the two-tailed asymptotic sig-
nificance, and, if a ������� subcommand is specified, one-tailed and two-tailed exact or
Monte Carlo probabilities. 

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses. 

• Every value in the range defined by the pair of values for the grouping variable forms a
group. 

• If the /������ subcommand is specified, and the number of populations, k, is greater
than 5, the p value is estimated using the Monte Carlo sampling method. The exact p value
is not available when k exceeds 5.

Operations

• Cases from the k groups are ranked in a single series, and the rank sum for each group is
computed. A test statistic is calculated for each variable specified before BY.

• The Jonckheere-Terpstra statistic has approximately a normal distribution. 

• Cases with values other than those in the range specified for the grouping variable are
excluded. 

• The direction of a one-tailed inference is indicated by the sign of the standardized test
statistic. 

Example

���� ����� �(����� )* ��	��.�

&&�����#��/�'��

• This example performs the Jonckheere-Terpstra test for groups defined by values 0
through 4 of V2. The exact p values are calculated. 
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SEED

SET [SEED={n     }]
          {RANDOM}

New Syntax

A new RANDOM keyword on the SEED subcommand allows you to specify a random initial
seed. See the SPSS Base Syntax Reference Guide for a complete description of the full SET
syntax.

SEED Subcommand

SEED specifies the random number seed. You can specify any integer, preferably a number
greater than 1 but less than 2,000,000,000. You can also choose to have a seed randomly
selected by your system.

• SPSS uses a pseudo-random-number generator to select random samples or create uni-
form or normal distributions of random numbers. The generator begins with a seed, a
large integer. Starting with the same seed, the system will repeatedly produce the same
sequence of numbers and will select the same sample from a given data file. 

• At the start of each session, the seed is set by SPSS to a value that may be fixed or may
vary, depending on whether you have specified SET SEED=n or SET SEED=RANDOM.

• By default, the seed value changes each time a random-number series is needed in a ses-
sion. To repeat the same random distribution within a session, specify the same seed
each time.

• The random number seed can be changed any number of times within a session.

RANDOM Selects a random initial seed.

Example
SET SEED=987654321.

• The random number seed is set to the value 987,654,321. The seed will be in effect the
next time the random-number generator is called. 
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Appendix A
Conditions for Exact Tests

There are certain conditions under which exact results are always provided, even when
you have specified the Monte Carlo method either through the dialog box or through
syntax. Table A.1 displays the conditions for the relevant tests under which exact
results are always provided and a request for the Monte Carlo method is ignored.

Table A.1  Conditions under which exact tests are always provided

Test Procedure Condition

Binomial test Nonparametric tests: Binomial 
Tests

Exact results are always 
provided 

Fisher’s exact test Crosstabs  table
Likelihood-ratio test Crosstabs  table
Linear-by-linear association 
test

Crosstabs  table

McNemar test Nonparametric tests: Tests for
two related samples

Exact results are always 
provided 

Median test Nonparametric tests: Tests for
several related samples

 and 

Pearson chi-square test Crosstabs  table
Sign test Nonparametric tests: Tests for

two related samples
Wald-Wolfowitz runs test Nonparametric tests: Tests for

two independent samples

2 2×
2 2×
2 2×

k 2= n 30≤

2 2×
n 25≤

n 30≤
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Appendix B
Algorithms in SPSS Exact Tests

Exact Algorithms
An exact p value is computed by enumerating every single outcome in some suitably
defined reference set, identifying all outcomes that are more extreme than the observed
one, and summing their probabilities under the null hypothesis. Although this might
appear to be a formidable computing problem by the time the size of the reference set
exceeds, say, a few million, it is still feasible. Many researchers have worked on this
problem and have developed fast numerical algorithms that enumerate all of the
possible outcomes implicitly rather than explicitly. That is, these algorithms don’t
examine each individual outcome separately. There are ways to identify large numbers
of outcomes at one time and classify them as either more or less extreme than the
observed outcome. A complete collection of reference files for all of these algorithms
is available in the Exact-Stats Mailbase on the Internet. These references can be
accessed through FTP, Gopher, or World Wide Web at the following addresses:

�������������������������������� ���!�����������
"#�$�%��������������������������&����!�!��� ���!��������$�%
'����
$������(((������������������������&����!�!��� ���!
��������$�%'����
One class of algorithms, called network algorithms, was developed by Mehta, Patel, and
their colleagues at the Harvard School of Public Health. These algorithms are referenced
below in chronological order. Many of them have already been incorporated into SPSS
Exact Tests, and others will be incorporated into future releases of the software.

Mehta, C. R., and N. R. Patel. 1980. A network algorithm for the exact treatment of the
 contingency table. Communications in Statistics, 9:6, 649–664.

Mehta, C. R., and N. R. Patel. 1983. A network algorithm for performing Fisher’s exact test
in  contingency tables. Journal of the American Statistical Association, 78:382,
427–434.

Mehta, C. R., N. R. Patel, and A. Tsiatis. 1984. Exact significance testing to establish treat-
ment equivalence ordered categorical data. Biometrics, 40: 819–825.

Mehta, C. R., N. R. Patel, and R. Gray. 1985. On computing an exact confidence interval
for the common odds ratio in several  contingency tables. Journal of the American
Statistical Association, 80:392, 969–973.
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Mehta, C. R., and N. R. Patel. 1986. A hybrid algorithm for Fisher’s exact test in unordered
 contingency tables. Communications in Statistics, 15:2, 387–403.

Mehta, C. R., and N. R. Patel. 1986. FEXACT: A FORTRAN subroutine for Fisher’s exact
test on unordered  contingency tables. ACM Transactions on Mathematical Soft-
ware, 12:2, 154–161.

Hirji, K., C. R. Mehta, and N. R. Patel. 1987. Computing distributions for exact logistic
regression. Journal of the American Statistical Association, 82:400, 1110–1117.

Mehta, C. R., N. R. Patel, and L. J. Wei. 1988. Constructing exact significance tests with
restricted randomization rules. Biometrika, 75:2, 295–302.

Hirji, K., C. R. Mehta, and N. R. Patel. 1988. Exact inference for matched case control
studies. Biometrics, 44:3, 803–814.

Agresti, A., C. R. Mehta, and N. R. Patel. 1990. Exact inference for contingency tables with
ordered categories. Journal of the American Statistical Association, 85:410, 453–458.

Mehta, C. R., N. R. Patel, and P. Senchaudhuri. 1992. Exact stratified linear rank tests for
ordered categorical and binary data. Journal of Computational and Graphical Statistics,
1: 21–40.

Mehta, C. R. 1992. An interdisciplinary approach to exact inference for contingency tables.
Statistical Science, 7: 167–170.

Hilton, J., and C. R. Mehta. 1993. Power and sample size calculations for exact conditional
tests with ordered categorical data. Biometrics, 49: 609–616.

Hilton, J., C. R. Mehta, and N. R. Patel. 1994. Exact Smirnov p values using a network
algorithm. Computational Statistics and Data Analysis, 17:4, 351–361.

Mehta, C. R., N. R. Patel, P. Senchaudhuri, and A. A. Tsiatis. 1994. Exact permutational tests
for group sequential clinical trials. Biometrics, 50:4, 1042–1053.

Monte Carlo Algorithms
Monte Carlo algorithms solve a slightly easier computational problem. They do not
attempt to enumerate all of the members of the reference set. Instead, they estimate the
p value by taking a random sample from the reference set. The Monte Carlo algorithms
in SPSS Exact Tests make use of ideas in the following papers (in chronological order):

Agresti, A., D. Wackerly, and J. M. Boyett. 1979. Exact conditional tests for cross-classifi-
cations: Approximations of attained significance levels. Psychometrika, 44: 75–83.

Patefield, W. M. 1981. An efficient method of generating  tables with given row and
column totals. (Algorithm AS 159.) Applied Statistics, 30: 91–97.

Mehta, C. R., N. R. Patel, and P. Senchaudhuri. 1988. Importance sampling for estimating
exact probabilities in permutational inference. Journal of the American Statistical Asso-
ciation, 83:404, 999–1005.

Senchaudhuri, P., C. R. Mehta, and N. R. Patel. 1995. Estimating exact p values by the method
of control variates, or Monte Carlo rescue. Journal of American Statistical Association.
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Index

asymptotic method, 1
asymptotic one-sided p value

Jonckheere-Terpstra test, 159
K independent samples, 122, 129, 131
Mann-Whitney test, 84

asymptotic p value, 12
assumptions, 12
defined, 16
measures of association, 169
obtaining, 7
Pearson’s chi-square, 16
when to use, 16, 29–37

asymptotic two-sided p value
chi-sguare test, 40
Jonckheere-Terpstra test, 159
K independent samples, 122
K related samples, 101
Mann-Whitney test, 84
McNemar test, 69
r x c tables, 140
sign test, 62
Wilcoxon signed-ranks, 62

binary data
one-sample test, 49–55

binomial test, 49–50
example: pilot study for new drug, 50

bivariate data
measures of association, 166–167

blocked comparisons, 95
BY (keyword)

NPAR TESTS command, 204

categorical data
assumptions, 12

categorical variables, 135
CIN (keyword)

CROSSTABS command, 200

NPAR TESTS command, 202
class variables, 135
Cochran’s Q test, 108–111

example:cross-over clinical trial, 109–111
when to use, 96

Cohen’s kappa. See kappa
confidence levels

specifying, 7
contingency coefficients

measures of association, 185, 185–188
contingency tables. See r x c contingency tables
continuous data

assumptions, 12
continuous variables, 135
correlations

Pearson’s product-moment correlation coefficient, 
172–174

Spearman’s rank-order correlation coefficient, 
174–176

Cramer’s V
example, 187–188
measures of association, 185–188

CROSSTABS (command) 
new syntax, 200

Crosstabs procedure, 199–200
asymptotic p value, 7
confidence levels, 7
contingency coefficients, 185
exact p value, 8
exact statistics, 6–8
Fisher’s exact test, 141
gamma, 171
Goodman and Kruskal’s tau, 185
Kendall’s tau-b, 171
Kendall’s tau-c, 171
likelihood-ratio test, 141
linear-by-linear association test, 155
Monte Carlo p value, 7
Pearson chi-square test, 141
Pearson’s product moment correlation coefficient, 

171
samples, 7
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Somers’ d, 171
Spearman’s rank-order correlation coefficient, 171
time limit, 8
uncertainty coefficient, 185

crosstabulated data
measures of association, 165–167

crosstabulation, 199–200
See also Crosstabs procedure

data sets
small, 30
sparse, 36–37
tied, 31–34
unbalanced, 35

doubly ordered contingency tables, 135
doubly ordered contingency tables. See alsor x c 

contingency tables

EXACT (keyword)
CROSSTABS command, 200
NPAR TESTS command, 202

exact method, 1–3
exact one-sided p value

Jonckheere-Terpstra test, 159
K independent samples, 134
linear-by-linear association test, 162
Mann-Whitney test, 82
McNemar test, 69
runs test, 92

exact p value, 12, 16
defined, 1
example: fire figher data, 1–3
obtaining, 8
r x c tables, 136
when to use, 24

exact statistics
obtaining, 6–8

exact tests
memory limits, 8
setting time limit, 8
when to use, 4

exact two-sided p value
Jonckheere-Terpstra test, 160
K independent samples, 134
K related samples, 99

Kolmogorov-Smirnov, 88
linear-by-linear assocation test, 162
Mann-Whitney test, 82
McNemar test, 69
measures of agreement, 168
median test, 124
nominal data, 168
ordinal data, 168
r x c tables, 138
runs test, 52

Fisher’s exact test, 147–148
example: 2 x 2 table, 18–24
example: tea-tasting experiment, 18–24
when to use, 141

Friedman’s test, 101–104
example: effect of hypnosis, 102–104
when to use, 96

full multinomial sampling, 137

gamma, 171
example: smoking habit data, 183–184
measures of association, 183–184

Goodman and Kruskal’s tau
example: party preference data, 189–191
measures of association, 185, 188–191

independent samples, 75–94
Jonckheere-Terpstra test, 114, 131–134
when to use each test, 76

Jonchkeere-Terpstra test
example: space shuttle O-ring incidents, 132–134

Jonckheere-Terpstra test
asymptotic one-sided p value, 159
asymptotic two-sided p value, 159
exact one-sided p value, 159
exact two-sided p value, 160
example: dose-response data, 157–160
in Tests for Several Independent Samples 

procedure, 204
r x c contingency tables, 156–160
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when to use, 115, 156
J-T (subcommand)

NPAR TESTS command, 204

K independent samples tests, 113–134
Jonckheere-Terpstra test, 131–134
Kruskal-Wallis test, 127–130
median test, 122–127
when to use, 114–115

K related samples tests, 95–111
Cochran’s Q, 108–111
Friedman’s, 101–104
Kendall’s W, 104–107
when to use, 96

kappa
example:student teacher ratings, 193–195
measures of agreement, 193–195

Kendall’s coefficient of concordance. See Kendall’s W
Kendall’s tau

example: smoking habit data, 180–182
measures of association, 177–182

Kendall’s tau-b, 171
Kendall’s tau-c, 171
Kendall’s W test, 104–107

example: attendance at annual meeting, 105–107
example: relationship to Spearman’s R, 107
when to use, 96

Kolmogorov-Smirnov test, 87–91
example: effectiveness of vitamin C, 90–91
example:diastolic blood pressure data, 31–34
when to use, 76

Kruskal-Wallis test, 149–153
example: hematologic toxicity data, 129–130
example: tumor regression rates, 150–153
when to use, 115, 143, 149

likelihood ratio test
example:sports activity data, 25–27

likelihood-ratio test, 145–147
when to use, 141

linear-by-linear association test
exact one-sided p value, 162
exact two-sided p value, 162
example: dose-response data, 161

example:alcohol and birth defect data, 35
r x c contingency tables, 161–164
when to use, 156

location-shift alternatives, 115

Mann-Whitney test, 80–86
example: blood pressure data, 84–86
when to use, 76

Mantel-Haenszel test. See linear-by-linear association 
test

marginal homogeneity test, 71–73
example: matched-case control study, 71–72
example: Pap-smear classification, 72–73
in Two-Related-Samples Tests procedure, 203
when to use, 58

MC (keyword)
CROSSTABS command, 200
NPAR TESTS command, 202

McNemar test, 68–70
exact one-sided p value, 69
exact two-sided p value, 69
example: voters’ preference, 70
when to use, 58

measures of agreement
exact two-sided p value, 168
kappa, 193–195

measures of association
asymptotic p values, 169
bivariate data, 166–167
contingency coefficients, 185, 185–188
Cramer’s V, 185–188
crosstabulated data, 165–167
exact p values, 168–169
gamma, 183–184
Goodman and Kruskal’s tau, 188–191
introduction, 165–170
Kendall’s tau, 177–182
Kendall’s W, 171
Monte Carlo p values, 169
nominal data, 185–191
ordinal data, 171–184
p values, 168–170
Pearson’s product-moment correlation coefficient, 

171, 172–174
phi, 185–188
point estimates, 168
proportional reduction in prediction error, 188–191
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proportional reduction in predictive error, 185
Somers’ d, 177–182
Spearman’s rank-order correlation coefficient, 171, 

174–176
uncertainty coefficient, 189–191

median test, 122–127
example: hematologic toxicity data, 125–127
when to use, 115

memory limits
exact tests, 8

METHOD (subcommand)
CROSSTABS command, 200
NPAR TESTS command, 202, 204

MH (subcommand)
NPAR TESTS command, 203

Monte Carlo method, 3
defined, 3
example:fire figher data, 3
random number seed, 8–9

Monte Carlo one-sided p value
sign test, 63
Wilcoxon signed-ranks test, 63

Monte Carlo p value
obtaining, 7
when to use, 24–29

Monte Carlo p values
measures of association, 169

Monte Carlo two-sided p value 
chi-square test,41
K independent samples, 120
K related samples, 100
Kolmogorov-Smirnov, 88
Mann-Whitney test, 83
median test, 124
r x c tables, 139
sign test, 64
Wilcoxon signed-ranks test, 64

nominal data
contingency coefficients, 185–188
Cramer’s V, 185–188
exact two-sided p values, 168
Goodman and Kruskal’s tau, 188–191
phi, 185–188
proportional reduction in prediction error, 188–191
uncertainty coefficient, 189–191

nominal variables, 135
nonparametric tests

assumptions, 12
asymptotic p value, 7
binomial, 49
Cochran’s Q, 95
confidence levels, 7
exact pvalue, 8
exact statistics, 6–8
Friedman’s, 95
Jonckheere-Terpstra test, 114, 155
Kendall’s W, 95
Kolmogorov-Smirnov, 75
Kruskal-Wallis, 114, 149
Mann-Whitney test, 75
marginal homogeneity, 57
McNemar, 57
median test, 114
Monte Carlo p value, 7
new syntax, 202
new tests, 8
runs, 49, 75
samples, 7
sign, 57
time limit, 8
two-related samples, 57
Wald-Wolfowitz runs test, 75
Wilcoxon signed-ranks, 57

NPAR TESTS (command), 201–204
J-T subcommand, 204
METHOD subcommand, 202
MH subcommand, 203
new syntax, 202
pairing variables, 203

observed r x c tables, 135–136
computing exact p value for, 136

one-sample tests
binary data, 49–55
runs test, 51–55

one-sided p value
binomial test, 50
K independent samples, 120, 122

Mann-Whitney test, 82, 84
McNemar test, 69
runs test, 92
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sign test, 62, 63
Wilcoxon signed-ranks test, 62, 63

ordered alternatives, 115
ordered variables, 135
ordinal data

exact two-sided p values, 168
gamma, 183–184
Kendall’s tau, 177–182
measures of association, 171–184
Pearson’s product-moment correlation coefficient, 

172–174
Somers’ d, 177–182
Spearman’s rank-order correlation coefficient, 

174–176

p value
choosing a method, 22–37
hypothesis testing, 11–14
in two-sample tests, 80
measures of association, 168–170

p value. See also one-sided p value
p value. See also two-sided p value.
PAIRED (keyword)

NPAR TESTS command, 203
paired samples, 57–73

when to use each test, 58
Pearson chi-square

example: 3 x 4 table, 14–18
example: fire figher data, 14–18
example: sparse contingency table, 12–14
example: sports activity data, 36–37

Pearson chi-square test, 138, 144–145
when to use, 141

Pearson’s product-moment correlation coefficient
example:social striving data, 30, 172–174
measures of association, 172–174

phi
example, 187–188
measures of association, 185–188

point estimates
measures of assocation, 168

Poisson sampling, 137
preferences

random number seed, 205
product multinomial sampling, 137, 143

proportional reduction in prediction error
measures of association, 185, 188–191

proportional reduction in prediction error. See also 
Goodman and Kruskal tau

proportional reduction in prediction error. See also 
uncertainty coefficient

r x c contingency tables
doubly ordered, 155–164
example: oral lesions data, 143–144
Jonckheere-Tepstra test, 156–160
Kruskal-Wallis test, 149–153
linear-by-linear association test, 161–164
observed, 135–136
reference sets for, 136
singly ordered, 149–153
tests on, 135–140
unordered, 141–148

RANDOM (keyword)
SET command, 205

random number seed, 8–9
specifying, 205

reference sets, 16–17, 21, 137
for r x c tables, 136

runs test, 51–55, 91–94
example: children’s aggression scores, 53–54
example: discrimination against female workers, 

92–94
example: small data set, 54–55
when to use, 76

samples
Monte Carlo method, 7

SAMPLES (keyword)
NPAR TESTS command, 202

sampling
full multinomial, 137
Poisson, 137
product multinomial, 137

SEED (subcommand)
SET command, 205

seed. See random-number seed
SET (command)

SEED subcommand, 205
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sign test, 59–67
when to use, 58

singly ordered contingency tables, 135
singly ordered contingency tables. See also r x c 

contingency tables
Somers’ d, 171, 177–182

example: smoking habit data, 180–182
measures of association, 177–182

Spearman’s rank-order correlation coefficient
example: social striving data, 175–176
measures of association, 174–176

test statistics
defining for r x c tables, 138

Tests for Several Independent Samples procedure, 
201–204

grouping variables, 204
time limit

setting for exact tests, 8
TIMER (keyword)

NPAR TESTS command, 202
Two-Related-Samples Tests procedure, 203
two-sample tests

independent samples, 75–94
Kolmogorov-Smirnov, 87–91
Mann-Whitney, 80–86
marginal homogeneity, 71–73
McNemar, 68–70
median, 94
paired samples, 57–73
runs, 91–94
sign, 59–67
Wilcoxon signed-ranks, 59–67

two-sided p value
binomial test, 50
K independent samples, 115, 120, 121
K related samples, 99, 101
Kolmogorov-Smirnov, 88
Mann-Whitney test, 82, 84
McNemar test, 69
median test, 124
r x c tables, 138, 140
runs test, 52
sign test, 62, 64
Wilcoxon signed-ranks test, 62, 64

uncertainty coefficient
example: party preference data, 189–191
measures of association, 185, 189–191

unordered continous contingency tables, 135
unordered r x c contingency tables

See also r x c contingency tables

Wald-Wolfowitz. See runs test
Wilcoxon rank-sum test, 11
Wilcoxon signed-rank test, 11
Wilcoxon signed-ranks test, 59–67

example: AZT for AIDS, 64–67
mid-ranks, 60
permutational distribution, 60
when to use, 58

Wilcoxon-Mann-Whitney test. See Mann-Whitney 
test

WITH (keyword)
NPAR TESTS command, 203
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